Convalt Energy, con sede en Estados Unidos, firmó un memorando de entendimiento con el Ministerio de Agua y Energía de Chad para tres plantas solares comunitarias por un total de 3 MW, junto con 1,5 MWh de almacenamiento de baterías.
Convalt Energy construirá tres plantas solares comunitarias con almacenamiento de baterías en Chad.
La empresa con sede en Nueva York firmó un memorando de entendimiento con el Ministerio de Agua y Energía de Chad para la construcción de los proyectos.
Las plantas se construirán en las ciudades de Lai, Bongor y Moundou. Tendrán una capacidad combinada de 3 MW de energía solar más 1,5 MWh de sistemas de almacenamiento en baterías.
El Ministerio de Agua y Energía de Chad dijo en un comunicado que los proyectos representan «otra etapa en el fortalecimiento de las capacidades de producción de energía eléctrica del país frente a la demanda cada vez mayor de la población».
Chad tenía 2 MW de capacidad solar instalados a finales de 2023, según la Agencia Internacional de Energías Renovables (IRENA).
Según el sitio web de Convalt Energy, la empresa se encuentra ahora en las últimas etapas de desarrollo de una planta solar de 120 MW para la capital nacional, Yamena. El sitio web indica que la construcción comenzará en el segundo trimestre de 2025, con las operaciones comerciales previstas para el año siguiente.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
La Agencia de Ferrocarriles de Pasajeros de Sudáfrica (PRASA) ha abierto una licitación de ingeniería, adquisiciones y construcción (EPC) para instalaciones solares en sus sitios en todo el país. La fecha límite para las manifestaciones de interés es el 21 de enero de 2025.
AAA, empresa estatal responsable de la mayoría de los servicios ferroviarios de pasajeros en Sudáfricaha iniciado una licitación EPC para instalaciones solares.
Los sistemas solares se ubicarán en sitios identificados por la AAA y se desarrollarán según un modelo de construcción, operación y transferencia. Las instalaciones se desarrollarán como conjuntos de cubierta o marquesina.
El proyecto planea proporcionar un suministro ininterrumpido de energía a los sitios de AAA, mientras vende el exceso de energía a terceros.
El 10 de diciembre se llevará a cabo una sesión informativa obligatoria. Las expresiones de interés pueden enviarse por correo hasta el 21 de enero de 2025.
En noviembre, la autoridad fiscal de Sudáfrica abrió una licitación para la ingeniería, diseño e instalación de sistemas de paneles solares en sus oficinas en todo el país. La fecha límite para las solicitudes es el 9 de diciembre.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Los investigadores del instituto alemán explicaron que la degradación inducida por los rayos UV puede causar pérdidas de eficiencia y voltaje mayores de lo esperado en todas las tecnologías celulares dominantes, incluidos los dispositivos TOPCon. Los científicos esperan que las capas de nitruro de silicio puedan usarse para mejorar la estabilidad UV de TOPCon en comparación con las capas de PECVD que normalmente se utilizan en PERC y células de heterounión.
Investigadores de Alemania Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) han investigado la estabilidad frente a la exposición a los rayos UV de tres tipos de tecnologías convencionales de células solares: contacto pasivado con óxido de túnel (TOPCon), emisor pasivado y célula trasera (PERC) y heterounión (HJT), y han descubierto que todas ellas pueden sufrir una grave degradación de la tensión implícita.
Explicaron que la degradación inducida por los rayos UV (UVID) puede provocar pérdidas inesperadas de voltaje y eficiencia en el futuro, especialmente cuando pueda estar disponible un historial de UVID más amplio. “Un ejemplo destacado de esto es Degradación inducida por luz y temperatura elevada. (LeTID), lo que ha provocado pérdidas imprevistas en los módulos PERC durante la operación de campo”, afirmaron. «Informes recientes sugieren que un escenario similar podría repetirse debido a UVID para las tres arquitecturas celulares modernas».
Los efectos nocivos de la radiación UV se han asociado en gran medida en los paneles solares con encapsulantes de módulos transparentes a los rayos UV y el envejecimiento de los materiales de embalaje de los módulos, lo que conduce a la decoloración, delaminación y agrietamiento de la lámina posterior del encapsulante. En particular, la luz ultravioleta puede contribuir a la formación de ácido acético en el encapsulante del módulo, que corroe la rejilla de contacto de la celda. El rendimiento de las células solares también se ve afectado negativamente por la radiación UV mediante la generación de defectos en la superficie. Dentro de una célula solar de silicio, la luz ultravioleta puede dañar las capas de pasivación, el silicio que se encuentra debajo y la interfaz entre las dos.
«Actualmente, los encapsulantes transparentes a los rayos UV son el estándar para la parte frontal del módulo», dijo el autor principal de la investigación, Fabian Thome. revistapv. “El uso de encapsulantes que bloquean los rayos UV podría ser sin duda una estrategia para reducir la UVID, pero esto tiene el costo de una menor eficiencia del módulo. Sabemos de algunos fabricantes que ya utilizan esta estrategia. Parece ser una buena solución intermedia hasta que la UVID se resuelva a nivel celular”.
«Para establecer una conexión entre las pruebas de laboratorio y la aplicación de campo, analizamos datos resueltos específicamente de un sitio de pruebas en el desierto de Negev, Israel, desde 2019», dijeron. «En la secuencia de prueba UV, tres células por grupo fueron expuestas a la radiación UV desde el frente y dos desde atrás, con los respectivos lados opuestos cubiertos».
Las pruebas demostraron que la exposición trasera generaba menos UVID que la exposición frontal, y todas las tecnologías sufrían pérdidas de voltaje superiores a 5 mV después de 60 kWh·m.−2. “Después de la exposición a los rayos UV, la recombinación adicional (una medida para la formación de defectos) fue más pronunciada en PERC que en TOPCon; pero la pérdida de voltaje fue comparable”, dijo Thome. “Esto se debe a que TOPCon tiene una mayor calidad de pasivación y por lo tanto ‘siente’ incluso pequeñas cantidades de defectos. Cuanto mayor sea la eficiencia inicial, mayor será la sensibilidad incluso a pequeñas cantidades de defectos adicionales”.
El análisis también mostró que las capas de pasivación a base de óxido de aluminio (AlOx) y nitruro de silicio (SiNy), que se depositan en células TOPCon mediante deposición de capas atómicas (ALD), pueden mejorar la estabilidad UV de estos dispositivos en comparación con las capas específicamente utilizadas en células PERC y HJT, que se depositan a través de plasma mejorado deposicion quimica de vapor (PECVD).
“Los componentes comunes a las tres tecnologías celulares también pueden ser importantes para la estabilidad UV. «Un ejemplo sería el índice de refracción y el espesor de las capas de nitruro de silicio, que determinan la dosis efectiva de UV que llega al silicio», concluyó Thome.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Sunlit ha lanzado el inversor bidireccional EV3600 para aplicaciones solares fotovoltaicas en garajes y balcones, que permite a los usuarios con tarifas eléctricas dinámicas cargar unidades de almacenamiento cuando los precios son bajos. La empresa alemana afirma que el inversor admite extensiones para la funcionalidad de vehículo a hogar y de vehículo a red.
Sunlit Solar, con sede en Alemania, lanzó el EV3600, un inversor bidireccional que permite que sus sistemas de almacenamiento se carguen utilizando la energía de la red durante períodos de baja tarifa.
Esta característica, destinada a reducir los costes de electricidad, es especialmente útil en invierno, cuando la producción solar es limitada.
La compañía dijo que el inversor funciona a la perfección con sus dispositivos solares enchufables “BK215” y “B215”, sin requerir configuración previa.
El EV3600 se integra en los sistemas de almacenamiento y la aplicación solar de Sunlit después de una actualización automática del firmware OTA. Los usuarios pueden ampliar sus sistemas de forma modular para satisfacer las necesidades cambiantes.
La función de energía de emergencia del inversor proporciona respaldo a través de dos enchufes domésticos estándar de 230 V, con una potencia nominal de hasta 2,4 kW. Para potencias superiores, un instalador autorizado debe conectar el sistema a una red doméstica bifásica.
Para cocheras solares, el inversor admite la carga de vehículos eléctricos a través de la caja de pared Aurora 11 de Sunlit, que ofrece una conexión monofásica de 3,6 kW. Esta configuración proporciona una autonomía de 200 km con una carga de 10 horas. Una conexión bifásica adicional puede aumentar la potencia de carga hasta 11 kW, pero requiere una instalación profesional.
El inversor mide 524 mm x 338 mm x 292 mm, pesa 18,8 kg y ofrece 3,68 kW de potencia a 230 V CA. Funciona entre -20 C y 45 C y tiene una clase de protección IP44.
Sunlit planea agregar capacidades de vehículo a hogar y de vehículo a rojo a medida que haya disponibles nuevas interfaces y protocolos de carga. La empresa tiene como objetivo adaptar su funcionalidad a la evolución de las tecnologías de vehículos eléctricos.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
El minorista suizo Lehner Versand genera el 24,5% de las necesidades energéticas de sus edificios gracias a un proyecto de renovación que agregó 109 kW de capacidad de energía solar fotovoltaica a su fachada. El conjunto fotovoltaico tiene un efecto de lentejuelas, posible gracias a módulos de vidrio serigrafiados y una novedosa subestructura de muro cortina.
El director de proyectos solares suizo, Felix & Co Windgate, añadió 109 kW de capacidad fotovoltaica integrada en edificios (BIPV) a la fachada de una propiedad del minorista suizo Lehner Versand, como parte de un proyecto de renovación más amplio que aumentó la altura del edificio en 12 metros.
La ampliación supuso 866 m2 de módulos de vidrio coloreado serigrafiado suministrados por Ertec Solarun fabricante de módulos austriaco. La nueva fachada solar activa tiene una apariencia de lentejuelas gracias a la subestructura del muro cortina y los paneles de vidrio de colores. “Al incorporar diferentes inclinaciones en los elementos de la fachada, la envolvente del edificio está elegantemente diseñada. Esto también crea un juego estético de luces, dando a la estructura una vitalidad natural y una rica coloración”, dijo un portavoz de Windgate. revistapv.
El edificio ya contaba con una planta en cubierta con paneles solares de silicio convencional, que combinado con la nueva instalación ahora proporciona 114.560 kWh anuales, cubriendo el 24,5% de las necesidades del edificio, según un comunicado del Premio Solar Suizo 2024.
Según el portavoz de Windgate, existen beneficios prácticos para este tipo de instalación que incluye módulos instalados en las fachadas orientadas al sur, este y oeste, especialmente en invierno. “En general, el rendimiento energético de los sistemas de fachada es menor que el de las instalaciones en tejados debido al ángulo de incidencia de la luz solar menos favorable en comparación con los módulos fotovoltaicos en el tejado. Sin embargo, hay una ventaja significativa: los ángulos de luz solar más bajos durante el invierno se aprovechan de manera más efectiva, lo que mejora la confiabilidad del suministro de energía en invierno y aumenta el autoconsumo”, dijeron.
El equipo del proyecto logró el efecto de lentejuelas variando la dirección de inclinación de los módulos instalados en la subestructura del muro cortina. Fue una solución desarrollada, diseñada y fabricada por Ecolite, una empresa suiza de materiales de construcción. Los soportes, que sostienen los paneles en cuatro ángulos diferentes, se entregaron como subestructuras premontadas y se fijaron in situ a los tramos de acero.
“Nuestra tarea era adaptar un sistema de suspensión existente a los requisitos del proyecto de Lehner Versand de tal manera que se pudiera salvar los grandes claros entre las vigas de acero verticales de la ampliación y luego se pudiera montar la suspensión para los módulos fotovoltaicos inclinados. correctamente en términos de dilatación y estática”, dijo Samuel Bregenzer, fundador y gerente de Ecolite. revistapv.
El proyecto recibió recientemente el premio Schweizer Solarpreis 2024 en la categoría de rehabilitación de edificios.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
PowerChina ha revelado planos para un proyecto piloto fotovoltaico marino de 300 MW en el mar de Bohai, utilizando paneles solares avanzados diseñados para soportar condiciones marinas extremas.
PoderChina ha revelado planos para un proyecto piloto de energía solar marina de 300 MW en el mar de Bohai, al sureste del condado de Changli, provincia de Hebei. El proyecto, ubicado a unos 7,3 kilómetros de la costa en el mar de Bohai, cubrirá 957 metros cuadrados con profundidades de agua de 6 a 12 metros. Utilizará módulos bifaciales de doble vidrio de heterounión tipo n (HJT) con una potencia mínima de 715 Wp y celdas de 210 mm, con el objetivo de alcanzar una capacidad de compra de 339,68 MWp. Los módulos de alta eficiencia están construidos para soportar duras condiciones marinas como altas temperaturas, niebla salina y humedad.
Largo ha firmado una asociación estratégica con Raystech, el mayor distribuidor fotovoltaico de Australia. La colaboración se centrará en promover productos solares de alto valor, en particular módulos de tecnología de contacto posterior, en el mercado australiano. Redes de ópera Raystech en Australia y Nueva Zelanda.
Shanghái Tianyang dijo que pospuso la finalización de dos proyectos de producción de películas fotovoltaicas en Kunshan y Hai’an de diciembre de 2024 a junio de 2025. La compañía citó los desafíos en el sector solar, incluidas las tendencias de principios de 2024 de reducciones de precios y crecimiento de volumen, el aumento de pérdidas entre los fabricantes. y una expansión de la capacidad más lenta. Estas condiciones del mercado han reducido la urgencia de nueva capacidad de producción nacional.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Aritra Ghosh, académica de la Universidad de Exeter, cuenta revistapv Se requiere un enfoque multidisciplinario para desbloquear todo el potencial de la agrovoltaica. Al analizar un nuevo artículo que compara los sistemas agrovoltaicos estáticos y de seguimiento en el Reino Unido, el investigador sostiene que es necesaria una mejor comprensión de los microclimas bajo los módulos y cómo la energía fotovoltaica afecta la bioquímica de los cultivos.
Según la investigadora británica Aritra Ghosh, se necesita una mejor comprensión de los microclimas y los efectos de la energía fotovoltaica aérea en la biología de los cultivos para mejorar la eficiencia del uso de la tierra en las instalaciones agrovoltaicas.
hablando con revistapv Sobre la publicación de un nuevo artículo que compara los efectos de las instalaciones agrovoltaicas estáticas y montadas en rastreadores, Ghosh dijo que los académicos especializados en fotovoltaica todavía tienen lagunas de conocimiento en lo que respeta a la ciencia de los cultivos, “y la gente de los cultivos no entienden el aspecto fotovoltaico. Necesitamos más tiempo para desarrollarnos, creo que eso es cierto para Alemania, Francia, Europa y cualquier lugar. No tienen los datos”.
Ghosh es profesor de la Universidad de Exeter y autor de «Evaluación de seguimiento de sistemas agrivoltaicos basados en energía solar fotovoltaica bifacial en todo el Reino Unido”, publicado en energia solar. El estudio utiliza herramientas de simulación para investigar cómo se puede integrar un sistema fotovoltaico en granjas que cultivan patatas en el Reino Unido. En el documento se incluyen ubicaciones que cubren las principales regiones del Reino Unido, en el que los investigadores utilizaron el software de diseño PVsyst en combinación con un sistema de apoyo a la toma de decisiones para la transferencia de agrotecnología (DSSAT) para producir datos de energía y producción agrícola para instalaciones hipotéticas.
Las simulaciones encontraron disparidades significativas en la irradiancia solar, la temperatura y las precipitaciones en los lugares estudiados, lo que influyó en la electricidad y la producción agrícola. A pesar de esto, surgieron algunas tendencias. Los módulos fotovoltaicos bifaciales montados sobre sistemas de seguimiento son el mejor tipo de instalación para la producción de energía solar, según el modelo. El estudio encontró que los paneles bifaciales de 440 W montados en un seguidor generaban un promedio de 24,6% más energía que los sistemas bifaciales estáticos.
Sin embargo, los rastreadores también tuvieron un efecto marcado en el rendimiento de los cultivos. Una instalación compuesta por paneles monofaciales en una instalación de seguimiento modelada para Birmingham dio como resultado rendimientos de cultivos tan bajos como 65,57% en comparación con una instalación bifacial estática con la misma cobertura de suelo.
Las instalaciones agrovoltaicas bifaciales estáticas fueron las instalaciones más positivas para el rendimiento de los cultivos. En términos de calificación de eficiencia del suelo (LER), las instalaciones estáticas también resultaron ser las más eficientes para extraer valor de un área, aunque LER no es un instrumento perfecto para la toma de decisiones en materia de agrovoltaica, según Ghosh. En cambio, el investigador afirmó que se requiere una comprensión más completa de la relación entre las instalaciones fotovoltaicas y el rendimiento de los cultivos para crear una solución que pueda informar a los agricultores qué funcionará mejor en sus tierras.
«Se trata de dos ciencias diferentes», dijo Ghosh. “Tenemos que entender cómo reaccionan los cultivos con la naturaleza porque eso afecta el rendimiento fotovoltaico. Según tengo entendido, algunos cultivos dan como resultado una temperatura ambiente más refrescante y otros no. Esto tendrá un impacto adicional en la generación de energía porque la energía fotovoltaica tiene un gradiente de temperatura. Por eso necesitamos una mayor interacción entre estas dos ciencias. No es tan simple, pero sí es factible”.
Ghosh agregó que a medida que continúe la investigación, será posible desarrollar una aplicación o software para brindar a los agricultores recomendaciones adaptadas a su localidad.
“Tal vez después de unos años podamos producir algún tipo de aplicación donde los agricultores no tengan que entender toda la ciencia, sino que necesiten conocer los elementos clave y la ciencia se realizará en el fondo. Supongamos que queremos cultivar patatas, pondremos algunos elementos básicos y eso les dirá cuál será la mejor solución. Todavía necesitamos más tiempo para eso, pero no se trata sólo de la irradiación solar, hay muchos factores aquí”, afirmó.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Investigadores de la Universidad de Miyazaki en Japón han publicado un documento técnico de antecedentes sobre protocolos de prueba para abordar los desafíos únicos de los módulos fotovoltaicos integrados en vehículos (VIPV). Presenta los antecedentes de un nuevo modelo de probabilidad numérica que incorpora sombreado, sombreado parcial, sombreado dinámico, terreno irregular y curvaturas de módulos.
Investigadores de la Universidad de Miyazaki en Japón han publicado un informe sobre los avances en pruebas y protocolos reproducibles que abordan los desafíos de medir el rendimiento de módulos fotovoltaicos curvos integrados en vehículos (VIPV).
En el estudio”Ensayos y calificación de sistemas fotovoltaicos integrados en vehículos: antecedentes científicos”, publicado en Materiales de energía solar y células solares, El equipo de investigación dijo que su trabajo abordó los aspectos únicos de los módulos VIPV, como la curvatura y el impacto de la irradiación causados por el sombreado, el sombreado parcial, el sombreado dinámico y las condiciones irregulares del terreno.
«El cálculo estándar para los sistemas fotovoltaicos a menudo se basa en suposiciones simplificadas, como la ausencia de sombras, terreno plano, instalaciones estáticas e irradiancia solar uniforme», dijo el coautor Kenji Araki. revistapv. “Sin embargo, estas suposiciones no reflejan con precisión las condiciones del mundo real. Es esencial considerar las imperfecciones reales, incluida la presencia de sombras, terreno irregular, sistemas fotovoltaicos móviles e irradiancia solar no uniforme. Aunque estos factores no se discuten en común, afectan significativamente el rendimiento de los sistemas fotovoltaicos en la práctica”.
El equipo llevó a cabo pruebas iniciales de nuevos protocolos y validación en laboratorios e institutos de investigación geográficamente diversos, así como pruebas en simuladores solares aplicando protocolos acordados utilizando los mismos datos de calibración, así como pruebas ciegas. Para las pruebas circulares, Nanjing AGG Energy, China, proporcionó módulos rígidos cubiertos de vidrio, incluidos cuatro niveles de radio de curvatura.
El grupo señaló al menos ocho diferencias claves que deben abordarse para lograr modelos y mediciones precisas para los productos VIPV. Por ejemplo, utilizando un sistema de coordenadas locales que incluye rotación 3D, captura las zonas de sombra de las puertas, el capó, el parachoques y el parabrisas trasero del vehículo.
Se requieren cálculos vectoriales basados en una matriz de sombreado, en lugar de una relación o ángulo de sombreado. Las formas tensoriales, 4-Tensor, se utilizan para la respuesta angular a la luz incidente, en lugar de la curva lambartiana, y en lugar de la pérdida de coseno por los ángulos del panel fotovoltaico, se utiliza una descripción de la geometría diferencial utilizando la expresión vectorial de un elemento unitario, señalaron los investigadores.
Algunas de las diferencias fueron resumidas por Araki. “En el nuevo modelo, una matriz de sombreado tiene en cuenta el sombreado no uniforme en el cielo hemisférico. “Por el contrario, el análisis clásico se basa en una relación de sombreado escalar”, explicó, añadiendo que el nuevo método considera las células solares con superficies curvas y las analiza utilizando principios de geometría diferencial, “a diferencia del cálculo clásico, que supone que las células solares tienen una superficie plana.”
Además, el nuevo modelo utiliza el trazado de rayos “realizado en forma vectorial” en lugar de utilizar un enfoque de coseno, y en lugar de representar la respuesta angular y la modificación del ángulo de incidencia (IAM) como curvas basadas en el ángulo de incidencia, “el nuevo cálculo las representa como cuatro tensores”.
De cara al futuro, los investigadores planean desarrollar una “herramienta de estimación del ahorro de combustible” para camiones y autobuses con paneles fotovoltaicos. Según Araki, la validación basada en el seguimiento de 130 camiones hasta el momento está en curso. Además, hay otros proyectos previstos para abordar los desafíos en las pruebas de módulos desarrollados para la energía agrivoltaica, la construcción de energía fotovoltaica integrada, así como la energía fotovoltaica alpina y la energía fotovoltaica integrada en aviones, como los pseudosatélites de gran altitud (HAPS). ).
El trabajo de investigación es resultado del aporte colectivo de miembros de la CEI TC82 PT600 iniciativa que tiene como objetivo establecer estándares para los sistemas VIPV.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Una serie de estudios longitudinales de tres sitios de polinizadores solares en Minnesota han demostrado evidencia de praderas nativas que crecen bajo paneles solares, proporcionando beneficios para el suelo y hábitat para la vida silvestre y los polinizadores.
Investigación dirigida por el Departamento de Energía de EE.UU. Laboratorio Nacional de Energías Renovables (NREL) ha recopilado datos sobre las interacciones entre el hábitat, los polinizadores, el suelo y la producción de energía solar en tres proyectos solares a gran escala en Minnesota.
El equipo de Prácticas solares innovadoras integradas con economías y ecosistemas rurales (InSPIRE) del NREL ha realizado investigaciones en los tres sitios durante los últimos seis años, en lo que el laboratorio dice que es la evaluación más completa y de mayor duración de las interacciones entre la energía solar, el suelo, el hábitat y polinizadores hasta la fecha.
Las tres instalaciones solares estudiadas en los artículos son los sitios solares de Chisago, Atwater y Eastwood, que forman parte del proyecto solar Aurora, propiedad de Enel Green Power y ubicada en el área de Minneapolis y sus alrededores. NREL dice que estos sitios de polinizadores solares son los primeros proyectos solares comerciales a escala de servicios públicos en los EE.UU. UU. que presentan una investigación exhaustiva sobre ecovoltaica.
La investigación encontró que las actividades de restauración de las praderas pueden ocurrir debajo de los paneles solares. Una vez que se descubrió la vegetación de la pradera, se observó que los polinizadores utilizaban el sitio tanto como tierras dedicadas a la conservación, y la evidencia apunta hacia una mayor abundancia y diversidad tanto de la vegetación como de los polinizadores bajo los paneles solares.
Después de la construcción del parque solar, se necesitaron de tres a cuatro años para que la vegetación de la pradera se estableciera por completo, y algunas especies no aparecieron hasta los años cinco y seis.
Se descubrió que plantar hábitat de polinizadores y vegetación nativa mitiga parte del daño ambiental causado al suelo y al hábitat cuando se construyen instalaciones solares y, eventualmente, puede proteger el suelo de la erosión futura, agrega la investigación, pero también advierte que puede llevar mucho tiempo restaurarlo. suelo después del daño causado por la producción intensiva de maíz y soja. NREL dice que el impacto general de las actividades de restauración del suelo en estos sitios no estará claro en los próximos años.
Los investigadores también observaron poco o ningún impacto en la generación anual de electricidad en todos los sitios. Si bien se registró que los hábitats nativos disminuyeron las temperaturas de los módulos fotovoltaicos en comparación con el suelo base, no se encontró que esto aumentara la producción de electricidad.
NREL dice que este hallazgo contradice los estudios realizados en otras regiones, lo que sugiere que la interacción microclimática entre los paneles fotovoltaicos, el suelo y la vegetación no es consistente en los diferentes paisajes y climas. «Uno de los resultados más importantes de esta investigación es que necesitamos estudiar más sitios», dijo el investigador de agrovoltaica del NREL, Chong Seok Choi. “Por ejemplo, el clima específico del sitio (la cantidad de humedad que hay en el aire, por ejemplo) puede afectar si el enfriamiento que observamos en el hábitat nativo puede conducir a una mayor eficiencia fotovoltaica. Todavía queda mucho trabajo por hacer”.
Los tres estudios fueron financiados por la Oficina de Tecnologías de Energía Solar del Departamento de Energía de EE.UU. UU. y realizados por NREL y Laboratorio Nacional de Argonnejunto con socios de investigación de la Universidad de Minnesota y la Universidad de Temple y profesionales de MNL, anteriormente Minnesota Native Landscapes.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
El fabricante chino JA Solar acordó construir una fábrica de módulos y células solares de 2 GW en Egipto con el apoyo de Global South Utilities, con sede en los Emiratos Árabes Unidos.
El gobierno egipcio ha firmado un memorando de entendimiento (MoU) con Global South Utilities, con sede en los Emiratos Árabes Unidos, y JA Solar de China para establecer dos instalaciones de fabricación de energía solar en lugares no especificados. El primer ministro egipcio, Mostafa Madbouly, asistió a la ceremonia de firma.
JA Solar supervisará la construcción de una fábrica de células solares de 2 GW y una fábrica de módulos fotovoltaicos de 2 GW, en asociación con entidades locales egipcias. La fábrica de células solares costará 138 millones de dólares, mientras que la fábrica de módulos requerirá 75 millones de dólares.
Global South Utilities ayudará a JA Solar a realizar estudios de viabilidad y obtención de subvenciones gubernamentales.
Las fábricas abastecerán principalmente al mercado interno de Egipto y al mismo tiempo reforzarán las cadenas de suministro locales con materiales como vidrio y aluminio. Los funcionarios egipcios enfatizaron el papel de las instalaciones en el apoyo a los objetivos de energía renovable y el desarrollo económico de Egipto.
JA Solar, un fabricante líder de energía solar, informó 57 GW en envíos de módulos fotovoltaicos en 2023, con 37,6 GW enviados en los primeros tres trimestres de 2024, la mitad a mercados extranjeros.
Egipto pretende generar el 42% de su energía a partir de fuentes renovables para 2030, reduciendo la dependencia de los combustibles fósiles.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.