India ha instalado 12,8 GW de nueva capacidad solar de enero a junio de 2024, según Mercom India. Esto incluye 11,7 GW de proyectos solares a gran escala, con 3,7 GW de proyectos comerciales e industriales (C&I) externos y más de 1,1 GW de instalaciones fotovoltaicas en tejados.

Bombay, India

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/Mumbai_India_Bombay_Mumbai_skyline_at_sunset-600×400.jpg» data-large-file=»https://www.pv -magazine.com/wp-content/uploads/2024/11/Mumbai_India_Bombay_Mumbai_skyline_at_sunset.jpg» tabindex=»0″ role=»button»>

Bombay, India

Imagen: Vyacheslav Argenberg, Wikimedia Commons

Delaware revista pv India

India instaló 12,8 GW de nueva capacidad solar en el primer semestre de 2024, un aumento del 228,3% con respecto a los primeros seis meses de 2023, según el informe “India Solar Market Leaderboard 1S 2024” de Mercom India.

Los proyectos solares a gran escala representaron el 91,4% (11,7 GW) de las instalaciones, incluidos 3,7 GW de energía solar comercial e industrial de acceso abierto/fuera del sitio. Las instalaciones solares en tejados ascendieron a más de 1,1 GW.

En junio de 2024, la capacidad solar acumulada de la India alcanzó aproximadamente 85,5 GW, con 126,1 GW de proyectos a gran escala (incluido el acceso abierto) en desarrollo y 103,8 GW de licitaciones en espera de subasta.

Adani Green Energy lideró el desarrollo solar a escala de servicios públicos con las mayores incorporaciones de capacidad y la mayor capacidad acumulada a junio de 2024. ReNew y O2 Power ocuparon el segundo y tercer lugar en nueva capacidad agregada.

Los 10 principales desarrolladores juntos contribuyeron con el 76,8 % de las incorporaciones a escala de servicios públicos y poseían el 44,5 % de la cartera de desarrollo de proyectos en junio de 2024.

Para continuar leyendo, visita nuestro revista pv India sitio.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Delaware revista pv 24/10

Pakistán está inundado de paneles solares. En agosto de 2024, BloombergNEF reveló que Pakistán había importado 13 GW de módulos chinos en los primeros seis meses del año. Un desarrollador de proyecto dijo revistapv que hay tanto exceso de oferta que los módulos están “tirados en el camino”. El país tenía alrededor de 3,5 GW de demanda de módulos en 2023, según los analistas de InfoLink. Entonces, ¿cómo se convirtió en el tercer mercado más grande para las exportaciones de módulos chinos a principios de 2024?

“En 2022, lo que ocurrió fue que el banco central de Pakistán se quedó sin dólares”, dijo Muhammad Mujahid, director ejecutivo del distribuidor fotovoltaico Innovo Corp, con sede en Lahore. Pakistán, muy endeudado, ha tenido déficits comerciales durante años y la situación alcanzó su punto máximo alrededor de dos años antes de que se iniciaran las importaciones de módulos. se disparó.

«Estamos muy bajos en divisas [foreign exchange] reservas y el gobierno tuvo que imponer una prohibición tácita a las importaciones”, dijo Mujahid, explicando que sólo se podían importar artículos esenciales, como medicamentos urgentes y alimentos. Distribuidores como Innovo no pudieron importar módulos solares durante unos nueve meses.

La energía solar como mercancía.

Algunos módulos sí ingresaron al país a pesar de las restricciones de importación. La importación de bienes en Pakistán normalmente requiere una carta de crédito (LC), un tipo de garantía para transacciones extranjeras emitidas por el banco del importador. La emisión de LC se restringió durante la crisis cambiaria de 2022, pero esto creó una oportunidad para las empresas paquistaníes que ya generaban ingresos en dólares estadounidenses a través de las exportaciones.

“Si me cuesta $0.15 [per watt of panel generation capacity] para importar directamente del OEM (fabricante de equipos originales), la gente vendía a 0,30 dólares/W en el mercado local”, dijo Hussain Khan, jefe comercial de Wateen Energy Solutions, la rama de energías renovables del gigante de las telecomunicaciones Wateen Telecomunicaciones. “Había un enorme margen del 100% en el negocio comercial. Todos se lanzaron y empezaron a pedir muchos paneles. Muchas empresas que exportan, si exportan arroz, por ejemplo, traerían sus dólares del extranjero. De repente vimos un gran aumento en el negocio de distribución”.

Mujahid dijo que la falta de experiencia en energía solar no era un obstáculo. Añadió que la mercantilización de los paneles significaba que “se podía importar [modules] de fabricantes de grado A y simplemente venderlos en el mercado. No es difícil de vender”.

Sin embargo, el exceso de paneles acabó con esos márgenes en 2024 y los módulos fotovoltaicos se están vendiendo con pérdidas.

A pesar de esto, Mujahid dijo que no espera ver una avalancha de empresas que abandonen el mercado. «Creo que tomaría otros seis meses, o tal vez un año de pérdidas para salir porque esos tipos han ganado mucho dinero», dijo.

Inversión corporativa

Gran parte de ese dinero proviene del segmento comercial e industrial (C&I), ya que las empresas multinacionales y locales han estado invirtiendo fuertemente en energía fotovoltaica, según los desarrolladores locales.

«Todos los que tienen acceso al capital han optado por la energía solar», afirmó Khan.

Wateen Energy Solutions ha instalado 30 MW en un período de 18 meses y espera instalar alrededor de 50 MW de energía solar en 2025. La cartera de desarrollo de la compañía abarca desde una matriz de 100 kW en Coca Cola Export Co. hasta una implementación más reciente de 4,5 MW para Master Group, uno de los principales conglomerados de Pakistán.

Khan describió la energía fotovoltaica como la “inversión más sencilla” porque las matrices ofrecen un retorno de la inversión (ROI) después de 18 meses a dos años.

El retorno de la inversión no sólo es corto porque los módulos son baratos. Existen generosas tarifas de medición neta disponibles para instalaciones de hasta 1 MW de capacidad de generación y con conexión a red trifásica, aunque el Gobierno baraja una tarifa reducida. Incluso si las tarifas de medición neta se vuelven menos lucrativas, la energía solar seguirá siendo una inversión atractiva ya que los costos de la electricidad en Pakistán han aumentado dramáticamente en un corto espacio de tiempo.

En su informe “Estado de la industria” para 2023, la Autoridad Reguladora Nacional de Energía Eléctrica de Pakistán (NEPRA) atribuyó un “aumento sin precedentes” en el costo de la electricidad a una variedad de factores. Entre ellos se incluyen la devaluación de la moneda, la reducción de la demanda de electricidad, altas pérdidas de transmisión y distribución, robos, patrones de demanda variable, litigios y “mala gobernanza en el sector de la energía eléctrica en general”.

Los pagos por capacidad (cantidades fijas de “toma o pago” pagadas por las empresas de servicios públicos a los generadores, independientemente del volumen de electricidad generada) también contribuyeron a los aumentos en las facturas, según NEPRA.

El Instituto de Economía Energética y Análisis Financiero (IEEFA) dice que Pakistán está sumido en una aguda crisis de pago de capacidad.

IEEFA informó que Pakistán pagó 6 billones de PKR (21,5 mil millones de dólares) en pagos de capacidad entre 2019-20 y 2023-24, mientras que los ingresos por energía fueron solo de 5 billones de PKR. Se prevén pagos de capacidad de 2,1 billones de PKR para el año financiero 2024-25, que finaliza el 30 de junio.

Los pagos por capacidad comprenden más de la mitad del precio de la energía fijado por la Agencia Central de Compras de Energía de Pakistán en junio de 2024, porque los acuerdos de compra de energía (PPA) a largo plazo firmados con productores de energía independientes en Pakistán están indexados al dólar. Cuando el valor de la rupia cae, el costo de los pagos por capacidad aumenta.

«No podemos deshacernos fácilmente de estos contratos heredados porque son legalmente vinculantes y tienen una vida útil de 25 a 30 años», dijo Haneea Isaad, especialista en finanzas energéticas del IEEFA y coautora del informe de medición neta de Pakistán del instituto. “Cuando Pakistán firmó estos contratos en los años 1990 y principios de los 2000, el país enfrentaba un enorme déficit de suministro de energía. El gobierno realmente tuvo que ofrecer una prima por estos contratos, en forma de indexación del dólar, porque de lo contrario ningún inversor extranjero entraría. Lamentablemente, nuestro sector energético no ha evolucionado mucho desde entonces y todavía nos vemos obligados a ofrecer incentivos similares para atraer inversiones”.

Girando y negociando

Las empresas que quieran evitar los crecientes costos de la electricidad en Pakistán pueden, por supuesto, firmar sus propios PPA. La empresa solar Shams Power fue la primera empresa en firmar acuerdos de suministro de energía con clientes de C&I en Pakistán después de obtener las licencias necesarias del regulador, según su director ejecutivo, Omar M. Malik. La empresa posee y opera cerca de 40 MW de capacidad de generación solar en sitios C&I en el país y vende electricidad a los clientes a una tarifa acordada.

«El modelo de negocio es que hacemos de todo», dijo Malik. “Financiamos el proyecto, lo construimos, lo operamos, lo mantenemos durante 15 a 20 años y lo vendemos. [C&I customers] Electricidad con descuento respecto a la red. [price]. En algunos casos, nuestros clientes obtienen incluso un descuento del 70 %”.

La cartera de PPA solares conectados a la red de Shams Power incluye una amplia gama de proyectos, como una instalación en tejado de 5 MW para el mayorista alemán Metro Cash & Carry, una instalación en suelo de 5,5 MW para Coca Cola, un sistema montado en suelo de 2,5 MW para confitería el gigante Mondelez y 2,5 MW de energía solar en tejados en una planta de automóviles de Hyundai. Otros proyectos incluyen instalaciones en un hospital y una universidad, donde los ahorros de costos se están utilizando para financiar becas, mejorar las instalaciones y reducir los costos de atención médica, según el desarrollador. La compañía ha crecido agresivamente, dijo Malik, aunque los problemas económicos de Pakistán han afectado el mercado de PPA, debido a los mayores costos de financiamiento.

Sin embargo, podría haber nuevas e importantes oportunidades en el horizonte para desarrolladores como Shams Power. Ya existen regulaciones para reemplazar el modelo de comprador único de Pakistán con un mercado mayorista de electricidad competitivo, aunque el progreso hacia su implementación ha sido lento. A pesar de esto, existe una posibilidad real de que el wheeling (pagar por utilizar la red pública para transferir energía entre distintos compradores y vendedores de electricidad) pronto sea una opción para los inversores en energía solar.

«Las regulaciones sobre ruedas han estado vigentes desde 2015, con modificaciones implementadas en 2022», dijo la directora de operaciones de Shams Power, Irteza Ubaid. “Esto significa que, legal y técnicamente, el transporte es una opción viable para nosotros. La única cuestión pendiente es la estructura de precios que fijará la empresa distribuidora o la red. Estamos entre los primeros solicitantes de Wheeling y confiamos en que estamos a punto de obtener la aprobación. Anticipamos que este proceso se completará dentro del próximo año o 18 meses. Una vez aprobada, estamos completamente preparados para aprovechar esta oportunidad e implementar nuestros planes”.

Ubaid añadió que Shams Power tiene una cartera potencial de 500 MW, con una lista de clientes que incluye importantes multinacionales del sector de bienes de consumo de rápido movimiento, como Unilever, Pepsi, Nestlé y Coca Cola.

freno de mano estatal

El gobierno paquistaní es muy consciente de que el sector privado está interesado en desplegar capacidad solar a un ritmo para el autoconsumo, pero eso corre el riesgo de exacerbar el problema de los pagos por capacidad.

Syed Faizan Ali Shah es un experto nacional en energías renovables e integración de redes que coescribió el documento de medición neta de Pakistán de IEEFA con Isaad. Faizan, que también forma parte del comité de solarización del primer ministro Shehbaz Sharif, dijo que abrir las compuertas a la generación solar sin restricciones alteraría el mercado eléctrico de Pakistán, ya que una rápida reducción de los pagos a la red por parte del sector C&I podría ejercer más presión financiera sobre las empresas de servicios públicos centralizadas. Añadió que una mayor inclusión de energía solar distribuida en las instalaciones de C&I limitaría el potencial del próximo mercado energético mayorista de Pakistán.

“Si abrimos el mercado sin limitar [generation capacity]si se suelta, todos los consumidores industriales encontrarán una manera de compensar su demanda de energía contrayéndose [generation] en otra zona del país donde puedan comprar energía más barata”, dijo Faizan. “Si esto sucede, todo el parque de generación que ha adquirido el gobierno quedará inactivo, entonces ¿quién pagará por esas centrales eléctricas? Ésta es una preocupación importante: va en contra de las normas del mercado, pero la preocupación existe. Hay que pagar a las centrales eléctricas adquiridas centralmente de una forma u otra”.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Al regular el crecimiento secundario del yoduro de plomo, un grupo internacional de científicos ha construido una célula solar de perovskita con baja recombinación no radiativa y baja densidad de estado de defecto. Según se informa, el dispositivo mostró una estabilidad superior en las pruebas de estabilidad térmica y de humedad en comparación con las celdas de referencia.

Un equipo de investigación internacional ha fabricado una célula solar de perovskita que, según se informa, muestra una menor recombinación no radiativa y una menor densidad de estado de defecto.

«Nuestro estudio presenta una innovadora estrategia de crecimiento secundario de yoduro de plomo (PbI2) y regulación de la pila π-π que mejora la eficiencia fotovoltaica y la estabilidad de las células solares de perovskita», dijo el autor principal de la investigación, Mojtaba Abdi-Jalebi. revistapv. «Al promover la nucleación y cristalización controlada de PbI2 utilizando 4-fluorobenilamida (FBA), logramos películas de perovskita de alta calidad con granos grandes y estados de defectos minimizados, aumentando la eficiencia celular del 22,06% al 23,62%».

Las interacciones de apilamiento π – π consisten en una interacción no covalente no destructiva utilizada en la química y la biología molecular modernas. Ofrece ventajas como una fuerte fuerza de unión, un proceso de fabricación no destructivo y un funcionamiento sencillo.

«A través del apilamiento π-π y las interacciones de enlaces de hidrógeno entre FBA y la estructura de yoduro de plomo (Pb-I), estabilizamos significativamente el esqueleto de PbI6, abordando la pérdida de yodo, un factor clave en la degradación de las células solares de perovskita», dijo Abdi-Jalebi. «Este enfoque no sólo mejora la resiliencia de la estructura de Pb-I bajo estrés térmico y lumínico, sino que también logra una notable retención del 96% de la eficiencia inicial durante 1.300 horas, avanzando el camino hacia células solares de perovskita estables y comercialmente. viables».

El grupo utilizó una película porosa de PbI2 con baja energía libre de Gibbs y alta cristalinidad para construir un absorbente de perovskita de grano grande y con pocos defectos. el La energía libre de Gibbs es la energía disponible de una sustancia que puede utilizarse en una transformación o reacción química.

Esquema de la celda solar.

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/Unbenannt-1.jpg» data-large-file=»https://www.pv -magazine.com/wp-content/uploads/2024/11/Unbenannt-1.jpg» tabindex=»0″ role=»botón» src=»https://www.pv-magazine.com/wp-content/ uploads/2024/11/Unbenannt-1.jpg» alt width=»498″ height=»280″>

Esquema de la celda solar.

Imagen: University College London Malet Place

La celda se construyó con un sustrato hecho de óxido de indio y estaño (ITO), una capa de transporte de electrones (ETL) hecha de óxido de estaño (SnO2), el absorbente de perovskita, una capa de transporte de huecos (HTL) basado en espiro-OMeTAD, un espaciador basado Éster metílico del ácido fenil-C61-butírico (PCBM) y un contacto metálico de plata (Ag).

Probado en condiciones de iluminación estándar, el dispositivo logró una eficiencia de conversión de energía del 23,62 %, un voltaje de circuito abierto de 1,17 V, una densidad de corriente de cortocircuito de 26,19 mA/cm2 y un factor de llenado del 77,24 %. Una celda de referencia construida sin el tratamiento FBA logró una eficiencia del 22,07 %, un voltaje de circuito abierto de 1,15 V, una densidad de corriente de cortocircuito de 25,19 mA/cm2 y un factor de llenado del 76, 47 %.

La celda también pudo conservar el 77% de su eficiencia después de 1000 h de exposición al aire, en comparación con el 58% del dispositivo de referencia.

«La celda de perovskita objetivo mostró una estabilidad superior tanto en las pruebas de humedad como de estabilidad térmica», explicó el grupo de investigación. «La regulación del crecimiento de la cristalización de PbI2 en el método de deposición secuencial fue crucial para optimizar el crecimiento posterior de los cristales de perovskita».

El nuevo concepto de célula se presentó en el estudio “Crecimiento secundario de yoduro de plomo y regulación de la pila π-π para células solares de perovskita secuenciales con una eficiencia del 23,62%”, publicado en el Revista de ingenieria quimica.

El equipo de investigación estaba compuesto por científicos de China. Universidad del Petróleo del Suroeste, Universidad de Chongqingy el University College London Malet Place en el Reino Unido.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El último informe de la Agencia Internacional de Energía (AIE), que traza la evolución futura de la fabricación de energía limpia, dice que el mercado global combinado de energía fotovoltaica, turbinas eólicas, automóviles eléctricos, baterías, electrolizadores y bombas de calor aumentarán de 700 mil millones de dólares en 2023 a más de 2 billones de dólares para 2035.

La capacidad mundial de fabricación de módulos solares superará los 1,5 TW en 2035, según las previsiones del AIE. Su último informe, “Perspectivas de la tecnología energética 2024”, cubre la producción de energía solar, turbinas eólicas, automóviles eléctricos, baterías, electrolizadores y bombas de calor.

El informe utiliza escenarios como el Escenario de Políticas Declaradas (STEPS), que refleja el panorama político actual, y el Escenario de Promesas Anunciadas (APS), que supone que los gobiernos cumplen sus objetivos climáticos, para proyectar el potencial de crecimiento de estas tecnologías.

La AIE dijo que la capacidad mundial de fabricación de módulos solares podría alcanzar los 1.546 GW para 2035 bajo STEPS, y la capacidad aumentaría a 1.695 GW bajo APS. En 2023, la capacidad global se situó en 1.115 GW.

Se prevé que China mantenga un liderazgo en la producción solar, pero su participación en el mercado puede caer ligeramente a medida que los proyectos y políticas en otras regiones impulsen la expansión del fabricante, dijo la AIE.

Se espera que la capacidad de fabricación de módulos solares de EE.UU. UU. alcanzará los 90 GW para 2030 bajo STEPS, aumentando a poco más de 100 GW bajo APS. La AIE dijo que la demanda estadounidense de módulos solares y polisilicio se cubrirá casi en su totalidad con la producción nacional para 2035, mientras que la demanda de células solares y obleas seguirá dependiendo de las importaciones.

La AIE dijo que la capacidad de fabricación de módulos solares de la India podría alcanzar unos 80 GW bajo STEPS, aumentando a alrededor de 120 GW bajo APS. En la Unión Europea, el escenario APS respaldaría el objetivo de satisfacer el 40% de la demanda a través de la producción nacional.

A largo plazo, es probable que las diferencias en los fundamentos de costos en el mercado fabricante mundial se vuelvan cada vez más importantes, según el informe. La AIE dijo que esto podría dar una fuerte ventaja competitiva a regiones con bajos precios de energía, incluidas China, India, el Sudeste Asiático y Medio Oriente.

El informe pronostica que la demanda mundial de módulos solares crecerá de 460 GW en 2023 a 674 GW en 2035, a una tasa de crecimiento promedio del 3% anual, a 724 GW en 2050 bajo STEPS. Según APS, se espera que la demanda mundial de módulos solares alcance los 860 GW para 2035 y los 894 GW para 2050.

Se prevé que China seguirá siendo el principal motor de crecimiento de la demanda del sector mundial, alcanzando alrededor de 415 GW en 2035 tanto en el marco de STEPS como de APS. Se espera que India y otros mercados emergentes y economías en desarrollo (EDME) acaparen una participación creciente del mercado global en ambos escenarios, alcanzando casi el 25% en 2050 bajo STEPS y el 35% bajo APS.

La AIE dijo que la inversión promedio en la cadena de suministro fotovoltaica caerá en los próximos años, de más de 80 mil millones de dólares en 2023 a alrededor de 10 mil millones de dólares en los años 2024 a 2030, y luego disminuirá aún más entre 2031 y 2035. espera una caída porque “la capacidad actual es más que suficiente para cubrir una parte importante del despliegue”. La mayor inversión, agregada, se necesitará en China, Estados Unidos, India y la Unión Europea.

Con base en la configuración política actual, la AIE dijo que el mercado global combinado de energía solar, turbinas eólicas, tarjetas eléctricas, baterías, electrolizadores y bombas de calor podría aumentar de 700 mil millones de dólares en 2023 a más de 2 billones de dólares. en 2035, cerca del valor de la mercado mundial del petróleo crudo en los últimos años.

El director ejecutivo de la AIE, Fatih Birol, dijo que a medida que los países busquen definir su papel en la nueva economía energética, las políticas energéticas, industriales y comerciales se volverán más vitales y estarán interconectadas.

“Las transiciones a energías limpias presentan una gran oportunidad económica y los países están tratando, con razón, de aprovecharla”, dijo Birol. «Sin embargo, los gobiernos deben esforzarse por desarrollar medidas que también fomenten la competencia continua, la innovación y la reducción de costos, así como el progreso hacia sus objetivos energéticos y climáticos».

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El fabricante chino afirmó que los nuevos módulos Tiger Neo 3.0 están disponibles en dos versiones con potencias de 495 W y 670 W.

Imagen: JinkoSolar

El fabricante chino de módulos solares JinkoSolar ha presentado una nueva serie de módulos solares basada en contacto pasivo con óxido de túnel (TOPCon).

Los módulos Tiger Neo 3.0 presentan una eficiencia de conversión de energía del 24,8% y un factor de biinstalación de más del 85%, según el fabricante.

Los nuevos productos están disponibles en dos versiones con potencias de 495 W y 670 W. El primer panel está destinado a aplicaciones en sistemas residenciales, mientras que el segundo fue concebido para proyectos a escala de servicios públicos.

Los paneles vienen con una garantía de producto de 15 años y una garantía de rendimiento de 30 años. Se informa que la degradación del año inicial es del 1% y se indica una tasa de degradación lineal anual del 0,4%.

«La serie Tiger Neo 3.0 tiene un voltaje de circuito abierto más bajo y una corriente de cortocircuito más alta, lo que contribuye a un BOS más bajo que sus contrapartes», agregó JinkoSolar, sin proporcionar más detalles técnicos.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores polacos han evaluado cómo afecta el rendimiento del vidrio texturizado utilizado como cubierta frontal de paneles fotovoltaicos integrados en edificios. Han descubierto que el rendimiento energético podría ser hasta un 5 % menor en comparación con los módulos basados ​​en vidrio convencional, con parámetros de reflexión de hasta un 88 % en la región visible.

Científicos de la Universidad Católica Juan Pablo II de Lublin, Polonia, han analizado los parámetros ópticos y eléctricos del vidrio texturizado en la construcción de sistemas fotovoltaicos integrados (BIPV) y han descubierto que este tipo de vidrio puede afectar considerablemente a la generación de energía fotovoltaica. y aumentar la reflexión de la luz.

«En el caso de instalaciones en espacios urbanos, un parámetro importante es el bajo valor de reflexión y, en consecuencia, la reducción de los reflejos de la luz que pueden cegar a los conductores», afirmó el autor principal del estudio, Paweł Kwaśnicki. «Dado que BIPV se está volviendo cada vez más popular, amplía el alcance de la instalación en fachadas, paredes de edificios y varios tipos de acristalamiento, sus aspectos estéticos se convierten en uno de los parámetros clave».

Los vidrios texturizados se fabrican calentando láminas de vidrio, ablandándolas y luego pasándolas entre rodillos grabados. Para su investigación, los académicos utilizaron dos láminas de vidrio texturizado disponibles comercialmente. La primera muestra tenía una topografía de superficie con diferencias de altura de 45 μm, mientras que la segunda muestra estaba en el rango de 10 μm. La muestra 1 tenía un patrón regular, con rasgos de 400 μm de diámetro, mientras que en el caso de la muestra 2, el patrón era irregular, con objetos que oscilaban entre 50 μm y más de 1 mm.

En total, se construyeron tres módulos: uno con la muestra 1, el otro con la muestra 2 y el último con vidrio transparente de referencia. En todos los casos se colocó una lámina laminada entre el vidrio y la celda, que encapsulada medía 2,89 W. El factor de llenado de la celda desnuda se midió en 71%, su voltaje de circuito abierto en 0,699 V y su corriente de cortocircuito en 5,83 A.

«Según el cálculo, el valor de absorbancia solar directa para la muestra de referencia fue casi 13 y 5 veces menor que el de las muestras 1 y 2, respectivamente», dijeron los investigadores. “Para ambas muestras texturizadas, la transmitancia fue significativamente menor en la región del infrarrojo cercano (NIR) que en el vidrio de referencia. Además, para la muestra con un patrón de superficie regular (muestra 1), se observará una transmitancia ligeramente menor en la región infrarroja (IR) en comparación con la no regular (muestra 2). Se midió una reflexión significativamente menor en la región de luz visible (VIS): 8,5 veces menor para la muestra 1 y 1,6 veces menor para la muestra 2”.

En cuanto al rendimiento eléctrico, la celda de referencia midió una potencia máxima de 2,86 W; la muestra 1 tenía 2,79 W y la muestra 2 tenía 2,74 W. El factor de llenado, el voltaje de circuito abierto y la corriente de cortocircuito para el módulo de referencia fueron 72,4 %, 0,73 V y 5,425 A, respectivamente. La muestra 1 tenía 72,9 %, 0,727 V ​​y 5,27 A, mientras que la muestra 2 tenía 73,2 %, 0,728 V y 5,143 A.

El análisis mostró que el rendimiento energético en los módulos que utilizan vidrio texturizado podría ser hasta un 5 % menor en comparación con los módulos basados ​​en vidrio convencional, con parámetros de reflexión de hasta un 88 % en la región VIS.

«Dado que la radiación infrarroja tiene varios efectos negativos en las células fotovoltaicas de silicio, incluida una absorción limitada de energía, efectos térmicos que reducen la eficiencia, limitaciones de material y pérdidas ópticas debido a la recombinación de portadores, la aplicación de vidrio texturizado en módulos fotovoltaicos es rentable», concluyó el académico.» Además, la exposición prolongada a la radiación IR puede acelerar la degradación del material, lo que afecta la estabilidad y la vida útil de los módulos fotovoltaicos”.

Sus hallazgos fueron presentados en “Vidrio texturizado en la aplicación de la fotovoltaica arquitectónica”, publicado en Ingeniería y tecnología más limpias. Además de la Universidad Católica Juan Pablo II de Lublin, Kwaśnicki está afiliada al proveedor fotovoltaico polaco Sistema de aprendizaje automático.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Científicos de la India han analizado el rendimiento de un módulo fotovoltaico bifacial instalado sobre una superficie de suelo pintada de blanco y han descubierto que un ángulo de inclinación de 30 grados supera a todos los demás ángulos de inclinación en términos de potencia de salida.

Científicos de la Instituto de Tecnología de Vellore en India han investigado la influencia del ángulo de inclinación en la generación de energía en sistemas fotovoltaicos bifaciales instalados en superficies de suelo pintadas de blanco.

«Demostramos el ángulo de inclinación óptimo para maximizar la producción de energía a partir de módulos fotovoltaicos bifaciales, teniendo en cuenta tanto la irradiancia directa como la reflejada», dijo el autor correspondiente de la investigación, Suprava Chakraborty. revistapv. «Nuestra investigación subraya la importante papel de la reflectancia del suelo, particularmente cuando se utilizan superficies pintadas de blanco, para mejorar el rendimiento de los módulos fotovoltaicos bifaciales».

El análisis se realizó ajustando continuamente el ángulo de inclinación de un panel PERC monocristalino bifacial de 440 W proporcionado por el fabricante indio Loom Solar Pvt. Limitado. Limitado. Ltd. y desplegado en el techo del instituto de investigación de 0 a 90 grados durante los días soleados en febrero de este año, con mediciones tomadas en intervalos de una hora entre las 9:00 am y las 5:00 pm

“Se eligieron ocho ángulos de inclinación distintos, que van desde 0° (horizontal) hasta 90° (vertical)”, explicaron los académicos. «Estas posiciones extremas ofrecen distintas condiciones de exposición a la luz trasera, lo que permite un examen exhaustivo de su influencia en la generación de energía».

Los diferentes ángulos de inclinación fueron 0, 13, 25, 30, 35, 40, 45 y 90 grados. «Las encuestas bibliográficas han demostrado consistentemente que dentro del rango de inclinación de 30 a 60 grados, los módulos fotovoltaicos bifaciales colocados a 30 grados superan consistentemente a los de 60», agregaron.

El grupo utilizó un trazador IV de alta precisión para medir las curvas IV del panel y un sensor de radiación para medir la irradiancia solar incidente tanto en la parte delantera como en la trasera del panel. Se utilizó una cámara termográfica infrarroja para medir la temperatura del panel.

El análisis mostró que la generación de energía promedio diaria máxima se logró cuando el módulo se inclinó a 30 grados, lo que resultó en una potencia de salida de 316,85 W y una relación de irradiación bifacial que oscilaba entre 0,20 y 0, 40. También mostró que la potencia promedio diaria exhibió un aumento progresivo de 0 grados a 30 grados, seguido de una disminución a un mínimo de 148,51 W a 90 grados. «Curiosamente, la relación de irradiación mostró la tendencia opuesta, aumentando de 0,32 a 0,96 a 90 grados», observaron los científicos.

«Estos hallazgos sugieren que, si bien la irradiación general que llega al módulo aumenta con el ángulo de inclinación, la generación de energía óptima se logra con una inclinación de 30 debido al equilibrio entre la irradiancia delantera y trasera», afirmó Chakraborty. «La potencia de salida del módulo fotovoltaico mostró un cambio mínimo para ángulos de inclinación que oscilaban entre 13 grados y 45 grados en esta configuración experimental, teniendo en cuenta una incertidumbre de medición del 5 %».

El equipo de investigación presentó sus hallazgos en el estudio “Optimización del ángulo de inclinación para módulos fotovoltaicos bifaciales: equilibrio de la irradiancia directa y reflejada en superficies de suelo pintadas de blanco”, publicado en Energía Aplicada.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Alemania instaló 960 MW de energía solar en septiembre, lo que eleva su capacidad fotovoltaica acumulada a más de 94,52 GW.

Imagen: Julia Weihe, Unsplash

Delaware revista pv Alemania

Alemania instaló 960 MW de nueva capacidad fotovoltaica en septiembre, según las últimas cifras de la Agencia Federal de Redes (Bundesnetzagentur). Esto se compara con 906 en agosto de 2024 y 919 MW en septiembre de 2023.

En los primeros nueve meses de este año, los promotores conectaron 11,7 GW de energía solar a la red, frente a los 10,7 GW del mismo periodo del año anterior.

La capacidad fotovoltaica instalada acumulada del país superó los 94,52 GW a finales de septiembre.

Los sistemas fotovoltaicos sobre tejados respaldados por tarifas de alimentación o primas de mercado agregaron 521,6 MW en septiembre, mientras que las licitaciones solares contribuyeron con 323 MW de capacidad.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La española Gonvarri Solar Steel afirma que su nuevo seguidor de una hilera puede mejorar la estabilidad estructural y el rendimiento en condiciones adversas.

Imagen: Acero Solar Gonvarri

Delaware revista pv españa

La empresa española Gonvarri Solar Steel presentó esta semana su nuevo seguidor solar TracSmarT+2V Compact en un evento en Madrid.

«El nuevo rastreador ahora se agrega a nuestra cartera y se puede pedir ahora, y las primeras unidades estarán disponibles en enero de 2025», dijo un portavoz de la compañía. revistapv.

Gonvarri Solar Steel dijo que su seguidor de una sola fila puede mejorar la estabilidad estructural y el rendimiento en condiciones adversas. Presenta una estabilidad dinámica mejorada frente a eventos de viento, con una nueva posición de protección “muy agresiva” de 55 grados que supuestamente garantiza la estabilidad del sistema incluso en pendientes variables del terreno, así como frente al viento, la nieve y el granizo.

«El diseño también se ha optimizado para mitigar los efectos de la no linealidad gracias al tamaño de la cuerda, la alta rigidez y la baja deformación torsional», dijo la empresa.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!