Los investigadores del instituto alemán explicaron que la degradación inducida por los rayos UV puede causar pérdidas de eficiencia y voltaje mayores de lo esperado en todas las tecnologías celulares dominantes, incluidos los dispositivos TOPCon. Los científicos esperan que las capas de nitruro de silicio puedan usarse para mejorar la estabilidad UV de TOPCon en comparación con las capas de PECVD que normalmente se utilizan en PERC y células de heterounión.

Investigadores de Alemania Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) han investigado la estabilidad frente a la exposición a los rayos UV de tres tipos de tecnologías convencionales de células solares: contacto pasivado con óxido de túnel (TOPCon), emisor pasivado y célula trasera (PERC) y heterounión (HJT), y han descubierto que todas ellas pueden sufrir una grave degradación de la tensión implícita.

Explicaron que la degradación inducida por los rayos UV (UVID) puede provocar pérdidas inesperadas de voltaje y eficiencia en el futuro, especialmente cuando pueda estar disponible un historial de UVID más amplio. “Un ejemplo destacado de esto es Degradación inducida por luz y temperatura elevada. (LeTID), lo que ha provocado pérdidas imprevistas en los módulos PERC durante la operación de campo”, afirmaron. «Informes recientes sugieren que un escenario similar podría repetirse debido a UVID para las tres arquitecturas celulares modernas».

Los efectos nocivos de la radiación UV se han asociado en gran medida en los paneles solares con encapsulantes de módulos transparentes a los rayos UV y el envejecimiento de los materiales de embalaje de los módulos, lo que conduce a la decoloración, delaminación y agrietamiento de la lámina posterior del encapsulante. En particular, la luz ultravioleta puede contribuir a la formación de ácido acético en el encapsulante del módulo, que corroe la rejilla de contacto de la celda. El rendimiento de las células solares también se ve afectado negativamente por la radiación UV mediante la generación de defectos en la superficie. Dentro de una célula solar de silicio, la luz ultravioleta puede dañar las capas de pasivación, el silicio que se encuentra debajo y la interfaz entre las dos.

«Actualmente, los encapsulantes transparentes a los rayos UV son el estándar para la parte frontal del módulo», dijo el autor principal de la investigación, Fabian Thome. revistapv. “El uso de encapsulantes que bloquean los rayos UV podría ser sin duda una estrategia para reducir la UVID, pero esto tiene el costo de una menor eficiencia del módulo. Sabemos de algunos fabricantes que ya utilizan esta estrategia. Parece ser una buena solución intermedia hasta que la UVID se resuelva a nivel celular”.

En el estudio”Degradación inducida por rayos UV de células solares industriales PERC, TOPCon y HJT: ¿el próximo gran desafío de confiabilidad?”, publicado en RRL Solarlos investigadores explicaron que su análisis demostró células solares tanto comerciales como de laboratorio, sin revelar los nombres de los fabricantes. Los dispositivos fueron expuestos a la radiación de lámparas UV-340 sin cobertura.

«Para establecer una conexión entre las pruebas de laboratorio y la aplicación de campo, analizamos datos resueltos específicamente de un sitio de pruebas en el desierto de Negev, Israel, desde 2019», dijeron. «En la secuencia de prueba UV, tres células por grupo fueron expuestas a la radiación UV desde el frente y dos desde atrás, con los respectivos lados opuestos cubiertos».

Las pruebas demostraron que la exposición trasera generaba menos UVID que la exposición frontal, y todas las tecnologías sufrían pérdidas de voltaje superiores a 5 mV después de 60 kWh·m.2. “Después de la exposición a los rayos UV, la recombinación adicional (una medida para la formación de defectos) fue más pronunciada en PERC que en TOPCon; pero la pérdida de voltaje fue comparable”, dijo Thome. “Esto se debe a que TOPCon tiene una mayor calidad de pasivación y por lo tanto ‘siente’ incluso pequeñas cantidades de defectos. Cuanto mayor sea la eficiencia inicial, mayor será la sensibilidad incluso a pequeñas cantidades de defectos adicionales”.

El análisis también mostró que las capas de pasivación a base de óxido de aluminio (AlOx) y nitruro de silicio (SiNy), que se depositan en células TOPCon mediante deposición de capas atómicas (ALD), pueden mejorar la estabilidad UV de estos dispositivos en comparación con las capas específicamente utilizadas en células PERC y HJT, que se depositan a través de plasma mejorado deposicion quimica de vapor (PECVD).

“Los componentes comunes a las tres tecnologías celulares también pueden ser importantes para la estabilidad UV. «Un ejemplo sería el índice de refracción y el espesor de las capas de nitruro de silicio, que determinan la dosis efectiva de UV que llega al silicio», concluyó Thome.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Sunlit ha lanzado el inversor bidireccional EV3600 para aplicaciones solares fotovoltaicas en garajes y balcones, que permite a los usuarios con tarifas eléctricas dinámicas cargar unidades de almacenamiento cuando los precios son bajos. La empresa alemana afirma que el inversor admite extensiones para la funcionalidad de vehículo a hogar y de vehículo a red.

Inversor EV3600

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/SunLit_Bidirektionaler_Wechselrichter_EV3600-e1732790334608-600×300.png» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/SunLit_Bidirektionaler_Wechselrichter_EV3600-e1732790334608.png» tabindex=»0″ role=»botón»>

Inversor EV3600

Imagen: Iluminado por el sol

Delaware revista pv Alemania

Sunlit Solar, con sede en Alemania, lanzó el EV3600, un inversor bidireccional que permite que sus sistemas de almacenamiento se carguen utilizando la energía de la red durante períodos de baja tarifa.

Esta característica, destinada a reducir los costes de electricidad, es especialmente útil en invierno, cuando la producción solar es limitada.

La compañía dijo que el inversor funciona a la perfección con sus dispositivos solares enchufables “BK215” y “B215”, sin requerir configuración previa.

El EV3600 se integra en los sistemas de almacenamiento y la aplicación solar de Sunlit después de una actualización automática del firmware OTA. Los usuarios pueden ampliar sus sistemas de forma modular para satisfacer las necesidades cambiantes.

La función de energía de emergencia del inversor proporciona respaldo a través de dos enchufes domésticos estándar de 230 V, con una potencia nominal de hasta 2,4 kW. Para potencias superiores, un instalador autorizado debe conectar el sistema a una red doméstica bifásica.

Para cocheras solares, el inversor admite la carga de vehículos eléctricos a través de la caja de pared Aurora 11 de Sunlit, que ofrece una conexión monofásica de 3,6 kW. Esta configuración proporciona una autonomía de 200 km con una carga de 10 horas. Una conexión bifásica adicional puede aumentar la potencia de carga hasta 11 kW, pero requiere una instalación profesional.

El inversor mide 524 mm x 338 mm x 292 mm, pesa 18,8 kg y ofrece 3,68 kW de potencia a 230 V CA. Funciona entre -20 C y 45 C y tiene una clase de protección IP44.

Sunlit planea agregar capacidades de vehículo a hogar y de vehículo a rojo a medida que haya disponibles nuevas interfaces y protocolos de carga. La empresa tiene como objetivo adaptar su funcionalidad a la evolución de las tecnologías de vehículos eléctricos.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El minorista suizo Lehner Versand genera el 24,5% de las necesidades energéticas de sus edificios gracias a un proyecto de renovación que agregó 109 kW de capacidad de energía solar fotovoltaica a su fachada. El conjunto fotovoltaico tiene un efecto de lentejuelas, posible gracias a módulos de vidrio serigrafiados y una novedosa subestructura de muro cortina.

El director de proyectos solares suizo, Felix & Co Windgate, añadió 109 kW de capacidad fotovoltaica integrada en edificios (BIPV) a la fachada de una propiedad del minorista suizo Lehner Versand, como parte de un proyecto de renovación más amplio que aumentó la altura del edificio en 12 metros.

La ampliación supuso 866 m2 de módulos de vidrio coloreado serigrafiado suministrados por Ertec Solarun fabricante de módulos austriaco. La nueva fachada solar activa tiene una apariencia de lentejuelas gracias a la subestructura del muro cortina y los paneles de vidrio de colores. “Al incorporar diferentes inclinaciones en los elementos de la fachada, la envolvente del edificio está elegantemente diseñada. Esto también crea un juego estético de luces, dando a la estructura una vitalidad natural y una rica coloración”, dijo un portavoz de Windgate. revistapv.

El edificio ya contaba con una planta en cubierta con paneles solares de silicio convencional, que combinado con la nueva instalación ahora proporciona 114.560 kWh anuales, cubriendo el 24,5% de las necesidades del edificio, según un comunicado del Premio Solar Suizo 2024.

Según el portavoz de Windgate, existen beneficios prácticos para este tipo de instalación que incluye módulos instalados en las fachadas orientadas al sur, este y oeste, especialmente en invierno. “En general, el rendimiento energético de los sistemas de fachada es menor que el de las instalaciones en tejados debido al ángulo de incidencia de la luz solar menos favorable en comparación con los módulos fotovoltaicos en el tejado. Sin embargo, hay una ventaja significativa: los ángulos de luz solar más bajos durante el invierno se aprovechan de manera más efectiva, lo que mejora la confiabilidad del suministro de energía en invierno y aumenta el autoconsumo”, dijeron.

El equipo del proyecto logró el efecto de lentejuelas variando la dirección de inclinación de los módulos instalados en la subestructura del muro cortina. Fue una solución desarrollada, diseñada y fabricada por Ecolite, una empresa suiza de materiales de construcción. Los soportes, que sostienen los paneles en cuatro ángulos diferentes, se entregaron como subestructuras premontadas y se fijaron in situ a los tramos de acero.

“Nuestra tarea era adaptar un sistema de suspensión existente a los requisitos del proyecto de Lehner Versand de tal manera que se pudiera salvar los grandes claros entre las vigas de acero verticales de la ampliación y luego se pudiera montar la suspensión para los módulos fotovoltaicos inclinados. correctamente en términos de dilatación y estática”, dijo Samuel Bregenzer, fundador y gerente de Ecolite. revistapv.

El proyecto recibió recientemente el premio Schweizer Solarpreis 2024 en la categoría de rehabilitación de edificios.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La empresa de gestión de energía y especialista en volantes con sede en Utah ha presentado recientemente su conjunto completo de productos comerciales de seguridad, gestión y almacenamiento de energía.

Imagen: Toro

Delaware Noticias ESS

Torus, especialista en almacenamiento con sede en EE.UU. UU., presentó recientemente sus nuevas soluciones de ciberseguridad y almacenamiento de energía. La línea de productos, que se presentó en la Cumbre 47G Zero Gravity en Utah a finales de octubre, aprovecha la tecnología de volante integrada verticalmente de la compañía, que la distingue en el mercado de almacenamiento de energía comercial.

El producto, llamado Torus Nova Spin, es un avanzado sistema de almacenamiento de energía Flywheel (FESS) que ofrece capacidades de respuesta rápida para la estabilidad de la red y energía de respaldo. A diferencia de las baterías tradicionales, que dependen de reacciones químicas, Torus Nova Spin almacena energía mecánicamente haciendo girar un rotor a altas velocidades. Este diseño le permite ofrecer una alta densidad de potencia, el doble de vida útil que las baterías tradicionales y un tiempo de respuesta de menos de 250 milisegundos.

Otro sistema que presentó la empresa es Torus Nova Pulse. Se trata de un sistema de almacenamiento de energía en batería (BESS) diseñado específicamente para almacenamiento de energía de larga duración y soporte de red, escalable con capacidades de carga y descarga de cuatro a ocho horas.

Para continuar leyendo, visita nuestro Noticias ESS sitio web.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Aritra Ghosh, académica de la Universidad de Exeter, cuenta revistapv Se requiere un enfoque multidisciplinario para desbloquear todo el potencial de la agrovoltaica. Al analizar un nuevo artículo que compara los sistemas agrovoltaicos estáticos y de seguimiento en el Reino Unido, el investigador sostiene que es necesaria una mejor comprensión de los microclimas bajo los módulos y cómo la energía fotovoltaica afecta la bioquímica de los cultivos.

Según la investigadora británica Aritra Ghosh, se necesita una mejor comprensión de los microclimas y los efectos de la energía fotovoltaica aérea en la biología de los cultivos para mejorar la eficiencia del uso de la tierra en las instalaciones agrovoltaicas.

hablando con revistapv Sobre la publicación de un nuevo artículo que compara los efectos de las instalaciones agrovoltaicas estáticas y montadas en rastreadores, Ghosh dijo que los académicos especializados en fotovoltaica todavía tienen lagunas de conocimiento en lo que respeta a la ciencia de los cultivos, “y la gente de los cultivos no entienden el aspecto fotovoltaico. Necesitamos más tiempo para desarrollarnos, creo que eso es cierto para Alemania, Francia, Europa y cualquier lugar. No tienen los datos”.

Ghosh es profesor de la Universidad de Exeter y autor de «Evaluación de seguimiento de sistemas agrivoltaicos basados ​​en energía solar fotovoltaica bifacial en todo el Reino Unido”, publicado en energia solar. El estudio utiliza herramientas de simulación para investigar cómo se puede integrar un sistema fotovoltaico en granjas que cultivan patatas en el Reino Unido. En el documento se incluyen ubicaciones que cubren las principales regiones del Reino Unido, en el que los investigadores utilizaron el software de diseño PVsyst en combinación con un sistema de apoyo a la toma de decisiones para la transferencia de agrotecnología (DSSAT) para producir datos de energía y producción agrícola para instalaciones hipotéticas.

Las simulaciones encontraron disparidades significativas en la irradiancia solar, la temperatura y las precipitaciones en los lugares estudiados, lo que influyó en la electricidad y la producción agrícola. A pesar de esto, surgieron algunas tendencias. Los módulos fotovoltaicos bifaciales montados sobre sistemas de seguimiento son el mejor tipo de instalación para la producción de energía solar, según el modelo. El estudio encontró que los paneles bifaciales de 440 W montados en un seguidor generaban un promedio de 24,6% más energía que los sistemas bifaciales estáticos.

Sin embargo, los rastreadores también tuvieron un efecto marcado en el rendimiento de los cultivos. Una instalación compuesta por paneles monofaciales en una instalación de seguimiento modelada para Birmingham dio como resultado rendimientos de cultivos tan bajos como 65,57% en comparación con una instalación bifacial estática con la misma cobertura de suelo.

Las instalaciones agrovoltaicas bifaciales estáticas fueron las instalaciones más positivas para el rendimiento de los cultivos. En términos de calificación de eficiencia del suelo (LER), las instalaciones estáticas también resultaron ser las más eficientes para extraer valor de un área, aunque LER no es un instrumento perfecto para la toma de decisiones en materia de agrovoltaica, según Ghosh. En cambio, el investigador afirmó que se requiere una comprensión más completa de la relación entre las instalaciones fotovoltaicas y el rendimiento de los cultivos para crear una solución que pueda informar a los agricultores qué funcionará mejor en sus tierras.

«Se trata de dos ciencias diferentes», dijo Ghosh. “Tenemos que entender cómo reaccionan los cultivos con la naturaleza porque eso afecta el rendimiento fotovoltaico. Según tengo entendido, algunos cultivos dan como resultado una temperatura ambiente más refrescante y otros no. Esto tendrá un impacto adicional en la generación de energía porque la energía fotovoltaica tiene un gradiente de temperatura. Por eso necesitamos una mayor interacción entre estas dos ciencias. No es tan simple, pero sí es factible”.

Ghosh agregó que a medida que continúe la investigación, será posible desarrollar una aplicación o software para brindar a los agricultores recomendaciones adaptadas a su localidad.

“Tal vez después de unos años podamos producir algún tipo de aplicación donde los agricultores no tengan que entender toda la ciencia, sino que necesiten conocer los elementos clave y la ciencia se realizará en el fondo. Supongamos que queremos cultivar patatas, pondremos algunos elementos básicos y eso les dirá cuál será la mejor solución. Todavía necesitamos más tiempo para eso, pero no se trata sólo de la irradiación solar, hay muchos factores aquí”, afirmó.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores de la Universidad de Miyazaki en Japón han publicado un documento técnico de antecedentes sobre protocolos de prueba para abordar los desafíos únicos de los módulos fotovoltaicos integrados en vehículos (VIPV). Presenta los antecedentes de un nuevo modelo de probabilidad numérica que incorpora sombreado, sombreado parcial, sombreado dinámico, terreno irregular y curvaturas de módulos.

Investigadores de la Universidad de Miyazaki en Japón han publicado un informe sobre los avances en pruebas y protocolos reproducibles que abordan los desafíos de medir el rendimiento de módulos fotovoltaicos curvos integrados en vehículos (VIPV).

En el estudio”Ensayos y calificación de sistemas fotovoltaicos integrados en vehículos: antecedentes científicos”, publicado en Materiales de energía solar y células solares, El equipo de investigación dijo que su trabajo abordó los aspectos únicos de los módulos VIPV, como la curvatura y el impacto de la irradiación causados ​​por el sombreado, el sombreado parcial, el sombreado dinámico y las condiciones irregulares del terreno.

«El cálculo estándar para los sistemas fotovoltaicos a menudo se basa en suposiciones simplificadas, como la ausencia de sombras, terreno plano, instalaciones estáticas e irradiancia solar uniforme», dijo el coautor Kenji Araki. revistapv. “Sin embargo, estas suposiciones no reflejan con precisión las condiciones del mundo real. Es esencial considerar las imperfecciones reales, incluida la presencia de sombras, terreno irregular, sistemas fotovoltaicos móviles e irradiancia solar no uniforme. Aunque estos factores no se discuten en común, afectan significativamente el rendimiento de los sistemas fotovoltaicos en la práctica”.

El equipo llevó a cabo pruebas iniciales de nuevos protocolos y validación en laboratorios e institutos de investigación geográficamente diversos, así como pruebas en simuladores solares aplicando protocolos acordados utilizando los mismos datos de calibración, así como pruebas ciegas. Para las pruebas circulares, Nanjing AGG Energy, China, proporcionó módulos rígidos cubiertos de vidrio, incluidos cuatro niveles de radio de curvatura.

El grupo señaló al menos ocho diferencias claves que deben abordarse para lograr modelos y mediciones precisas para los productos VIPV. Por ejemplo, utilizando un sistema de coordenadas locales que incluye rotación 3D, captura las zonas de sombra de las puertas, el capó, el parachoques y el parabrisas trasero del vehículo.

Se requieren cálculos vectoriales basados ​​en una matriz de sombreado, en lugar de una relación o ángulo de sombreado. Las formas tensoriales, 4-Tensor, se utilizan para la respuesta angular a la luz incidente, en lugar de la curva lambartiana, y en lugar de la pérdida de coseno por los ángulos del panel fotovoltaico, se utiliza una descripción de la geometría diferencial utilizando la expresión vectorial de un elemento unitario, señalaron los investigadores.

Algunas de las diferencias fueron resumidas por Araki. “En el nuevo modelo, una matriz de sombreado tiene en cuenta el sombreado no uniforme en el cielo hemisférico. “Por el contrario, el análisis clásico se basa en una relación de sombreado escalar”, explicó, añadiendo que el nuevo método considera las células solares con superficies curvas y las analiza utilizando principios de geometría diferencial, “a diferencia del cálculo clásico, que supone que las células solares tienen una superficie plana.”

Además, el nuevo modelo utiliza el trazado de rayos “realizado en forma vectorial” en lugar de utilizar un enfoque de coseno, y en lugar de representar la respuesta angular y la modificación del ángulo de incidencia (IAM) como curvas basadas en el ángulo de incidencia, “el nuevo cálculo las representa como cuatro tensores”.

De cara al futuro, los investigadores planean desarrollar una “herramienta de estimación del ahorro de combustible” para camiones y autobuses con paneles fotovoltaicos. Según Araki, la validación basada en el seguimiento de 130 camiones hasta el momento está en curso. Además, hay otros proyectos previstos para abordar los desafíos en las pruebas de módulos desarrollados para la energía agrivoltaica, la construcción de energía fotovoltaica integrada, así como la energía fotovoltaica alpina y la energía fotovoltaica integrada en aviones, como los pseudosatélites de gran altitud (HAPS). ).

El trabajo de investigación es resultado del aporte colectivo de miembros de la CEI TC82 PT600 iniciativa que tiene como objetivo establecer estándares para los sistemas VIPV.

Imagen: Materiales de energía solar y células solares, Universidad de Miyazaki.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Una serie de estudios longitudinales de tres sitios de polinizadores solares en Minnesota han demostrado evidencia de praderas nativas que crecen bajo paneles solares, proporcionando beneficios para el suelo y hábitat para la vida silvestre y los polinizadores.

Investigación dirigida por el Departamento de Energía de EE.UU. Laboratorio Nacional de Energías Renovables (NREL) ha recopilado datos sobre las interacciones entre el hábitat, los polinizadores, el suelo y la producción de energía solar en tres proyectos solares a gran escala en Minnesota.

El equipo de Prácticas solares innovadoras integradas con economías y ecosistemas rurales (InSPIRE) del NREL ha realizado investigaciones en los tres sitios durante los últimos seis años, en lo que el laboratorio dice que es la evaluación más completa y de mayor duración de las interacciones entre la energía solar, el suelo, el hábitat y polinizadores hasta la fecha.

Los hallazgos se presentan en tres estudios, Beneficios ambientales colaterales del mantenimiento de la vegetación nativa con la infraestructura solar fotovoltaica”, disponible en El futuro de la Tierra, Si lo construyes, ¿vendrán? Respuestas de la comunidad de insectos al establecimiento de hábitat en instalaciones de energía solar en Minnesota, EE.UU. UU.”, disponible en Cartas de investigación ambiental y «Pequeña pradera debajo del panel: prueba del establecimiento de una mezcla de semillas en el hábitat de polinizadores nativos en tres sitios solares a escala de servicios públicos en Minnesota”, disponible en Comunicaciones de investigación ambiental.

Las tres instalaciones solares estudiadas en los artículos son los sitios solares de Chisago, Atwater y Eastwood, que forman parte del proyecto solar Aurora, propiedad de Enel Green Power y ubicada en el área de Minneapolis y sus alrededores. NREL dice que estos sitios de polinizadores solares son los primeros proyectos solares comerciales a escala de servicios públicos en los EE.UU. UU. que presentan una investigación exhaustiva sobre ecovoltaica.

La investigación encontró que las actividades de restauración de las praderas pueden ocurrir debajo de los paneles solares. Una vez que se descubrió la vegetación de la pradera, se observó que los polinizadores utilizaban el sitio tanto como tierras dedicadas a la conservación, y la evidencia apunta hacia una mayor abundancia y diversidad tanto de la vegetación como de los polinizadores bajo los paneles solares.

Después de la construcción del parque solar, se necesitaron de tres a cuatro años para que la vegetación de la pradera se estableciera por completo, y algunas especies no aparecieron hasta los años cinco y seis.

Se descubrió que plantar hábitat de polinizadores y vegetación nativa mitiga parte del daño ambiental causado al suelo y al hábitat cuando se construyen instalaciones solares y, eventualmente, puede proteger el suelo de la erosión futura, agrega la investigación, pero también advierte que puede llevar mucho tiempo restaurarlo. suelo después del daño causado por la producción intensiva de maíz y soja. NREL dice que el impacto general de las actividades de restauración del suelo en estos sitios no estará claro en los próximos años.

Los investigadores también observaron poco o ningún impacto en la generación anual de electricidad en todos los sitios. Si bien se registró que los hábitats nativos disminuyeron las temperaturas de los módulos fotovoltaicos en comparación con el suelo base, no se encontró que esto aumentara la producción de electricidad.

NREL dice que este hallazgo contradice los estudios realizados en otras regiones, lo que sugiere que la interacción microclimática entre los paneles fotovoltaicos, el suelo y la vegetación no es consistente en los diferentes paisajes y climas. «Uno de los resultados más importantes de esta investigación es que necesitamos estudiar más sitios», dijo el investigador de agrovoltaica del NREL, Chong Seok Choi. “Por ejemplo, el clima específico del sitio (la cantidad de humedad que hay en el aire, por ejemplo) puede afectar si el enfriamiento que observamos en el hábitat nativo puede conducir a una mayor eficiencia fotovoltaica. Todavía queda mucho trabajo por hacer”.

Los tres estudios fueron financiados por la Oficina de Tecnologías de Energía Solar del Departamento de Energía de EE.UU. UU. y realizados por NREL y Laboratorio Nacional de Argonnejunto con socios de investigación de la Universidad de Minnesota y la Universidad de Temple y profesionales de MNL, anteriormente Minnesota Native Landscapes.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La empresa alemana de equipos fotovoltaicos Coatema Coating Machinery afirma que sus soluciones de procesamiento rollo a rollo abarcan desde el laboratorio o el piloto hasta la escala de producción.

Proveedor de equipos de fabricación Maquinaria de recubrimiento Coatema ha lanzado una línea de productos rollo a rollo para tecnologías flexibles orgánicas, de perovskita y de células solares sensibilizadas por colorantes (DSSC).

Los productos de la empresa alemana admiten anchos de banda de trabajo de hasta 1.000 mm, así como una herramienta más pequeña para ajustes hoja a hoja.

El mayor de esta línea de productos fotovoltaicos rollo a rollo es Click&Coat, un modelo con anchos de banda de trabajo de 300 mm, 500 mm y 1.000 mm. Está diseñado para personalizarse con más de 30 módulos de proceso diferentes, incluidos secadores, laminadores, procesos láser, corte y equipos de control de calidad.

Sólo para el recubrimiento, hay más de 20 módulos disponibles, incluidos huecograbado, rasqueta, recubrimiento por ranura, pantalla rotativa, recubrimiento de cortina y serigrafía. En cuanto al secado, la empresa ofrece otras opciones, como aire caliente, infrarrojos, reticulación UV y secado por chorro.

El equipo está en uso en el Organización de Investigación Científica e Industrial del Commonwealth (CSIRO) en Australia, según Thomas Kolbusch, director de marketing y tecnología de Coatema. Otro ejemplo es Tecnologías de Electrónica Orgánica (OET) en Grecia, donde el fabricante de OPV está desarrollando soluciones para los mercados de agrovoltaica, automoción y materiales de construcción.

OET participa en un proyecto de la Unión Europea conocido como Flex2Energy, cuyo objetivo es integrar sistemas de control de calidad y trazado láser en línea dentro del proceso rollo a rollo, para su uso en una línea de ensamblaje de módulos automatizados construidos por una empresa española de maquinaria. Asamblea Mondragón.

Otros clientes de la industria fotovoltaica se encuentran en Brasil, América del Norte y Europa. «Estamos viendo que los fabricantes de perovskita y fotovoltaica orgánica están comenzando a fabricar productos para aplicaciones de Internet de las cosas sin baterías, por ejemplo», dijo Kolbusch. revistapv

De cara al futuro, Kolbusch ve oportunidades de mercado en la agrovoltaica. “En Grecia, España y Alemania existe interés por parte de las agencias gubernamentales en las aplicaciones de invernadero debido al beneficio de ahorro de espacio y al potencial para producir alimentos y energía con la misma infraestructura. Existe un enorme potencial para agregar grandes volúmenes de capacidad solar en áreas donde hay muchos invernaderos”, afirmó.

La energía fotovoltaica flexible tiene características que le dan una ventaja competitiva en comparación con la energía fotovoltaica convencional para su uso en invernaderos. “Es más liviano, de menor costo, más fácil de instalar y de mantener limpio. También produce electricidad durante más horas al día, arrancando y deteniéndose más tarde que la energía solar convencional”, afirmó Kolbusch.

Coatema también dispone de dos sistemas rollo a rollo más pequeños: el Easycoater para impresión hoja a hoja en tamaños estándar A4 y A0, y el Smartcoater con anchos de banda de hasta 300 mm, adecuado para laboratorio o pequeña producción piloto.

Coatema, fundada en 1974, diseña y produce equipos hoja a hoja y rollo a rollo para recubrimiento, impresión y laminación. Tiene productos para la fabricación de baterías, energía solar fotovoltaica, dispositivos médicos, pilas de combustible, hidrógeno verde y electrónica impresa.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Trina Solar dice que ha logrado una eficiencia récord del 26,58 % para una célula solar de contacto pasivado con óxido de túnel (TOPCon). El fabricante chino afirma que el Instituto Alemán para la Investigación de la Energía Solar Hamelin (ISFH) ha verificado el resultado de forma independiente.

Imagen: Trina Solar

trina solar ha logrado una eficiencia de conversión de energía del 26,58% para su célula solar industrial TOPCon de gran superficie. El Instituto Alemán para la Investigación de la Energía Solar en Hamelín (ISFH CalTeC) ha verificado el resultado de forma independiente, según el fabricante chino de módulos fotovoltaicos.

«Esta es la primera vez que la eficiencia de la celda TOPCon tipo n supera el 26%, y la velocidad de este avance es notable», dijo Gao Jifan, director ejecutivo de Trina Solar. “Trina Solar seguirá intensificando sus esfuerzos de I+D en células y módulos TOPCon, mejorando aún más su competitividad general. Al mismo tiempo, fortaleceremos la protección de la propiedad intelectual para garantizar que estas tecnologías de vanguardia permanezcan firmemente en nuestras manos”.

El jefe de estrategia global de productos de Trina Solar, Zhang Yingbin, dijo en un entrevista reciente estafa revistapv que la empresa pretende alcanzar una eficiencia superior al 26% en las células TOPCon para 2027.

Trina Solar alcanzó recientemente un nuevo hito de eficiencia del 26,58% para sus células TOPCon de silicio monocristalino tipo n, tras un 25,9% record establecido en octubre.

El avance proviene del refinamiento de piezas de silicio tipo n dopadas con fósforo de 210 mm × 182 mm y del uso de tecnología patentada de contacto pasivado de túnel cuántico.

Trina Solar dijo que optimizó la densidad de corriente de recombinación, la captura óptica y la impresión de líneas ultrafinas para mejorar el rendimiento.

En el pasado, ha establecido récords con celdas i-TOPCon con una eficiencia del 24,58 % en 2019, una celda de 210 mm con una eficiencia del 25,5 % en 2022, verificada por el Instituto Nacional de Metrología de China, y un módulo de salida récord de 740,6 W, certificado por TÜV SÜD. , en abril de 2024.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La Comisión Europea, Austria, Lituania y España han anunciado nuevas medidas de apoyo financiero para el desarrollo del hidrógeno renovable mientras la Unión Europea se prepara para la segunda subasta del Banco Europeo de Hidrógeno.

el Comisión EuropeaAustria, Lituania y España han anunciado nuevas ayudas financieras para el desarrollo del hidrógeno renovable. Los tres estados miembros participarán en el esquema de “subastas como servicio” como parte de la segunda subasta del Banco Europeo de Hidrógeno, lanzada el 3 de diciembre. “Además de los 1.200 millones de euros (1.300 millones de dólares) en financiación de la UE de En el Fondo de Innovación, los tres estados miembros de la UE desplegarán más de 700 millones de euros en fondos nacionales para apoyar proyectos de producción de hidrógeno. renovable. situado en sus paises» dicho el órgano ejecutivo europeo. «La financiación total movilizada por la subasta de hidrógeno renovable ascenderá, por tanto, a unos 2.000 millones de euros».

uniper ha seleccionado un Hidrógeno Eléctrico como su socio exclusivo para diseñar una planta de electrolizador PEM de 200 MW para el proyecto Green Wilhelmshaven en el norte de Alemania. Electric Hydrogen, que comenzó los trabajos preliminares de diseño de ingeniería inicial para el proyecto en octubre de 2024, explicó que la planta de producción funcionará junto con la cercana terminal de importación de hidrógeno. «Las plantas electrolizadoras de 100 MW de bajo coste de Hidrógeno Eléctrico están disponibles para su implementación en la Unión Europea en 2026». dicho la empresa estadounidense.

fuego solar Entregará 50 MW de capacidad de electrolizador a la planta de e-metano de Ren-Gas en Tampere, Finlandia. La empresa alemana dijo que la entrega del equipo constará de cinco módulos de electrólisis alcalina presurizada de 10 MW. Ren-Ga planea comenzar a construir en 2025 y espera operar comercialmente en 2027.

Casasjunto con los socios ABB, Equinor, Gassco y Yara Clean Ammonia, ha inaugurado oficialmente el proyecto HyPilot, una demostración en el campo de 1 Electrolizador PEM en contenedores de MW en la planta de procesamiento de gas de Kårstø en Rogaland, Noruega. Hystar obtuvo recientemente una subvención de 26 millones de euros del Fondo de Innovación de la UE para poder implementar su fábrica automatizada de GW, con una capacidad anual de 1,5 GW cuando la fábrica entra en funcionamiento en 2027. La capacidad de producción anual podría escalar a 4,5 GW para 2031, dijeron los socios.

flexiona tiene publicado un informe con Lhyfe y la Universidad de Estocolmo sobre el proyecto “BOxHy”, que sienta las bases para un proyecto piloto de inyección de oxígeno en alto mar de seis años de duración que se espera que se lance en unos meses. Lhyfe dijo en una nota enviada por correo electrónico que «los socios también acogen con satisfacción el creciente interés de los científicos, la industria y las instituciones en el importante problema de la «asfixia» (desoxigenación) de los océanos y la opción de la reoxigenación. «.

Ahora mismo ha lanzado un fluoroionómero producido con su nueva tecnología patentada sin fluorosurfactantes (NFS). “El nuevo grado está disponible comercialmente en todo el mundo y está destinado para su uso en aplicaciones seleccionadas relacionadas con el hidrógeno”, dijo el productor de materiales belga. En 2022, anunció aviones para fabricar casi el 100% de los fluoropolímeros sin fluorosurfactantes para 2026.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!