Investigadores en China han desarrollado una técnica de monitoreo de polvo que se basa únicamente en los recursos de hardware existentes de los inversores, sin requerir sensores ni datos meteorológicos adicionales. Las pruebas realizadas en paneles fotovoltaicos reales en tejados demostraron una precisión superior al 96 %”.

Investigadores en China han desarrollado una novedosa técnica de monitoreo de acumulación de polvo localizada para conjuntos fotovoltaicos distribuidos que se basa únicamente en el inversor de hardware existente, eliminando la necesidad de dispositivos adicionales o conectividad a Internet.

«Para los sistemas fotovoltaicos distribuidos con ingresos de generación de energía relativamente modestos, la dependencia de dispositivos adicionales o servicios externos inevitablemente aumenta la inversión inicial y extiende los períodos de recuperación», explicó el equipo. «Además, estos métodos a menudo implican procedimientos complejos que son difíciles de implementar para los no especialistas. Para abordar la necesidad de un monitoreo del polvo práctico y rentable, este estudio propone un enfoque de monitoreo localizado».

El nuevo método aprovecha el funcionamiento de Múltiples paneles dentro de la misma área local, lo que permite al sistema distinguir consistentemente los estados de acumulación de polvo en función de los datos operativos. En esta configuración, los inversores recopilan y analizan datos relevantes, que luego se comprimen utilizando un esquema de codificación diferencial (DE) mejorado aplicado al voltaje, la corriente y sus duraciones.

Posteriormente, un modelo de inteligencia artificial de unidad recurrente cerrada (GRU) extrae características e identifica patrones, mientras que un algoritmo K-means semisupervisado agrupa datos en grupos limpios y sucios utilizando ejemplos etiquetados. Los resultados diarios se agregan estadísticamente y, cuando surgen patrones consistentes, el sistema emite una advertencia. Los datos recopilados antes y después de cada operación de limpieza se tratan como instancias recién etiquetadas, actualizando el conjunto de muestras para un seguimiento futuro.

Para evaluar el sistema, los investigadores probaron tres grupos de paneles fotovoltaicos.: Grupo 1 con paneles de silicio policristalino de 230 W, siete años de servicio, topología 1×13 y potencia total 2,9 kW; Grupo 2 con paneles de silicio policristalino de 275 W, ocho años de servicio, topología 2×9 y potencia total 4,9 kW; y el Grupo 3 con paneles de silicio monocristalino de 135 W, dos años de servicio, topología 2×6 y una potencia total de 1,6 kW.

Todos los inversores eran del tipo puente completo trifásico con una potencia nominal de 10 kW. Los datos se recopilaron durante 12 días en condiciones soleadas, nubladas y nubladas, y cada grupo fotovoltaico se probó en cuatro escenarios diferentes de cobertura de polvo simulados utilizando películas plásticas con transmitancias del 85 %, 72 % y 61 %. De los 302.400 puntos de datos recopilados, 4.139 se conservaron después de la evaluación, 3.139 se utilizaron para capacitación y 1.000 se reservaron para pruebas.

El sistema demostró una precisión del 96,5 %, ligeramente inferior al 98 % de precisión de los enfoques colaborativos de referencia en la nube.

«El enfoque propuesto logra un bajo costo, una baja complejidad operativa y una alta precisión en el monitoreo de la acumulación de polvo, reduciendo así los gastos de mantenimiento y gestión de los sistemas fotovoltaicos distribuidos y mejorando la rentabilidad. del propietario”, concluyó el equipo.

El nuevo enfoque se describe en “Monitoreo de acumulación de polvo localizado para paneles fotovoltaicos distribuidos”, publicado en Energía solar. El equipo de investigación estaba compuesto por científicos de China. Universidad de Ciencia y Tecnología de Shandong y Universidad de Shandong.

Los científicos en hungría ha construido un prototipo de un apositivo de desestilacia térmica, respaldado por PV Power. Los paneles Fotovoltaicos usan un componente iot que se detecta cuando se detecta el polvo y se enfría cuando las temperaturas hijo DemaSiado altas. El Sistema logró un Rendimiento Diario de Agua Dulce de 6.1 L/m2 Pastel Día.

Un Grupo de Investigación del Universidad Húngara de Agricultura y Ciencias de la Vida ha desarrollado un Nuevo Apositivo de Destilacia de Agua Térmica Con Sistemas auxiliares con energía fotovoltaica. Utilizando un componente de Internet de las cosas (IoT), El Sistema se Autónoma y Enfría el Sistema Fotovoltaico para Obtener resultados Óptimos. Dentro del Marco IoT, Utiliza Estrategias de Mantenimiento predictivas y en tiempo real.

«ESTE ESTUDIO PROPONE UN NUEVO SISTEMA DE ENFRIAMIENTO Y REFRIGERACIÓN BASADO EN IOT DISEDEDEDICEMÁS PARA MÓDULOS Irradiancia solar en tiempo real, lo que provoca mecanismos receptivos de Limpieza y Enfriamiento basados ​​en el Agua Para Mantener el Rendimiento Óptimo de PV «, Dijo el Equipo. «LA Configuración Demuestra Demuestra que las las las Automatizadas reduce el significado de la temperatura la temperatura del módulo y la acumulacia de polvo de la superficie, lo que dura resultado en una mejor salida eléctrica y eficiencia operativa». «.

Antes de construyir la configuración experimental, el úito de investigación lo simuló utilizando un modelo matemós. Implemento el Diseño Mecánico del Sistema en Solidworks, Mientras que proteus se utilizó para la electónica del sistema. La Simulación Integó Los paneles Fotovoltaicos, El Almacenamiento de la Batería, Una Bomba de Agua y Una Unidad de Destilación Térmica Mejorada Por Un Concentador Parabólico Compupo (CPC). También incluía un motor con un Pincel de revestimiento para la limpieza y los ventiladores que actuaron como sopladores.

El Sistema Está Controlado por un microcontrolador ESP32, Que Permite la Operación en Tiempo Real En Función de Las Condicatos Ambientales. Primero se configurura para verificar dónde funciona el pv en condiciones normales. Si el Voltaje Medido es Inferior A 15 V, Verifica la Intensidad de la Luz. Si la intensidad de la luz es inferior a 400 lux, el problema se determina como baja luz solar y no se emite ningún comando. Embarrio de Sin Sin, Si la Intensidad del Sol Está por Encima de Ese Umbral, el problema el Polvo o el Sobrecalentamiento. Si la temperatura del panel es inferior a 30 ° C, El Sistema Concluye que el Polvo es el problema inicia el Pincel. Sin embargo, si la temperatura es superior a 30 c, concluye el sobrecalentamiento para ser el problema inicia a los fanficos.

Control architecture

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-600×400.jpg» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-1200×801.jpg» tabindex=»0″ role=»button» class=»size-medium wp-image-316606″ src=»https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-600×400.jpg» alt=»» width=»600″ height=»400″ srcset=»https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-600×400.jpg 600w, https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-1200×801.jpg 1200w, https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-768×513.jpg 768w, https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg-1536×1025.jpg 1536w, https://www.pv-magazine.com/wp-content/uploads/2025/09/1-s2.0-S2352484725005013-gr3_lrg.jpg 1663w» sizes=»(max-width: 600px) 100vw, 600px»>

Arquitectura de control

Imagen: Universidad Húngara de Agricultura y Ciencias de la Vida, informa De Energía, CC Por 4.0

Después del Diseño, Los Académicos Construyeron la configuración de la configuración experimental experimental módulo fotovoltaico que produce 47.2 W Bajo Irradiancia máxima. El Sistema se Probó LUEGO EN LOS Días Representaciones para la Primavera, El Verano, El Otoño y El Invierno en Gödöllő, El Norte de Hungría. El Componente Predictivo del Sistema Tenía un coeficiente de determinación (R2) DE 97.5–98.8 %, Error de Porcentaje Absoluto Medio (MAPE) DE 7–13 % Y Error de Cuadrado MediM de Raíz (RMSE) de 36–42 W/M2.

“El Prototipo CPC Portátil Desarrollado Logró un Rendimiento de Agua Dulce de 6.1 L/M2 Pastel en El Día, lo que representa una mejora de casi el 70% SOBRE El rendiMiento promedio de las im ágenes solares convencales. El sistema tambin fiscalmingnniciNAciENSOiLOMAiSOIENSÓ Térmica del 58% y UNA Eficiencia General de Utilización de CPC-PV de 63%, Por El Alcance del Rendimiento Tícico del Rango de CPC de CPC Informado en El Literatura de Literatura, Según El Literatura, Segúns Los resultores.

«Con la Retroalimentación del Sensor en Tiempo Desencadenó respuestas Inteligentes de Limpieza y Enfriamiento, Los Experimentos de Campo Confirmaron Mejoras del 8-15% en la Capitura de Irradiancia (p. EJ., 950 W/M2 Frente A 850 W/M2 en VERELO) YE YEATA DELEM Rendimiento de Energía Diaria, Al Tiempo que Mantiena la variatura de Eficiencia estacional por Debajo del 5%», Agregó el Opugo. «Los análisis de rendimiento estacionales mostraron benéficios durante todo el año, con ganancias de irradiancias que van del 7% en primavera al 10% en invierno».

El Sistema se presente en Sistema de Gestión Térmica y de Superficie Habilitado Para IoT para Módulos Fotovoltaicos Junto Con Un Colector Cilindro-Parabólicopublicado en Informa a De Energía.

Un Equipo de Investigadores en Argelia Ha Diseñado Un Nuevo Testbed y una Nueva Ley de Aceleracia que explica tanto la Velocidad del viento como densiDad de arena. La Nueva Metodología se Probó en Cuatro Módulos Fotovoltaicos y Mostró una Vida útil de Hasta 47 Años en Términos de Impacto de Arena.

Los Científicos de Argelia Han Propucción una Nueva Prueba de PrueBa de Envejecimento acelerado para módulos fv y desarrollaron una nueva ley de aceleración para la degradación de la erosión de la arena.

«A diferencia de los modelos existentes, nuestra investigación introduce una ley diseñada específicamente para la erosión de la arena, incorporando la velocidad del viento y la densidad de arena para predicciones de vida útil más precisas en entornos desérticos», dijo el autor correspondiente, Abdelkader Elkharraz, dijo Revista Fotovoltaica. “Uno de los factores más perjudiciales que afectan la confiabilidad del módulo fotovoltaico en entornos del desierto es la erosión de la arena. El Bombardeo Constante de Partículas de Arena, Impulsadas por Fuertas vientes, Puede Causar la degradacia Mecánica y Óptica de la Superficie del Módulo. ESTA DEGRADACIÓN SE MANIFIESTA DE VARIAS MANERAS, INCLUIDA LA ABRASIÓN DE LA CAPA ProtectorA de Vidrio, El Rascado del Recubrimiento antirreflectante y la acumulaciónón de Polvo y Esbros, Todos Contribuyendo a Una Reducción de la Transmisión de la Luze.

La Prueba de Prueba Personalizada Que Diseñó El Muque de Opero PARÁMETROS DE CON CONTROL DEL ANTIGUO EN LA EROSIÓN DE LA ARENA. Incluye un mecanismo de alimento de arena que regula la densiDad de arena, un ventilador de la velocidad variable para controlar la velocidad del viento y una etapa de rotación que permita la exposiciónica desde doss La configuración Utiliza Arena de Zona de Desertificación, Caracteria por Granos Más Grandes e Irregulares, lo que conduce una erosión más Agresiva.

El Equipo Probó Cuatro Módulos PV de Silicio Monocristalino; Dos de Ellos Eran Nevos Módulos de 100 W Dinel Solaire, Mientras que OTROS DOS ERAN DE LA VISTE PRE-USADO DE 80 W. BAJO LA CONDICIÓN DE PRUEBA 1, SE disparararon con una densidad de arena de 5,8 g/m3 y UNA Velocidad de 12 m/s; Mientras que en la Condició de Prueba 2, SE Estableció en 10.3 g/m3 y 15 m/s, Respectivamete. Según El Equipo, La Condición 1 RepresentABa un «Entorno acelerador Duro», Mientras que la Condición 2 representante «Un entorno más acelerado y más duro».

La Nueva Ley de Aceleración, Que se denominó la Ley de Elkharraz-Boussaid Después de sus desarrolladores, Considers la Velocidad del viento Unsistema Falla en Condiciones de FuncionAmiento Especias. Junto Con Un Programa de Análisis de Datos Basado en Lógica Difusa, EL MODOLO PODRIA ENCONTRAR EL FACTOR DE ACELERACIA (AF). La fa cuantifica la relaciónica entre la tasa de degradacia en las condiciones de prueba aceleradas y Condiciones del Mundo real.

Los datos recopilados se correlacionaron con los datos de viento del Mundo real de una planta solar en adrar, Argelia. Este conjunto de datos se utilizó para proyectar una Vida útil realista para nos módulos en las condiciones de operación típica del desierto ”, Dijo el profesor Elkharraz.

“Nuestro Modelo, Junto Con Un Programa Lógico Difuso para el Análisis de Datos, Estimó una Vida útil significativo más larga para Loss Módulos de Visel (46.8 Años) en comparación con los Móricos de los Centros de los Centros (31.6 Años). De Adrar, Argelia. Las Tasas de Degradacia Anual Más Bajas (0.64% Frente A 1.38% Para la Visel y el Dinel, Respetivamete) Hijo consistentes con la literatura existente y subrayan el potencia del modelo para predecir con precisión la vida Útil del módulo en las regiones propensas a la lAs Arena «.

Sus Hallazgos Fueron presenteRados en «Una Nueva Ley de Aceleración para la degradacia de la erosión de la arena de Módulos Fotovoltaicos«, Publicado en Energía renovable. Los Científicos de la Universidad Ahmed Draia de Argelia de Adrar, la Universidad Medea y el Centro de Desarrollo de Energía Renovable (CDER) Han Realizado La Investigación.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular