Un grupo de investigación chino ha creado una nueva tecnología de refrigeración radiativa para dispositivos fotovoltaicos. Consiste en una cámara hecha de etileno-tetrafluoroetileno y polidimetilsiloxano que, cuando se coloca encima de las células solares, puede alcanzar una potencia de enfriamiento promedio de aproximadamente 40 W/m2.

Investigadores de China han desarrollado un nuevo enfriamiento radiativo Tecnología para dispositivos fotovoltaicos que, según se informa, puede alcanzar una densidad de potencia de refrigeración de hasta 40 W/m.2 y una densidad de potencia fotovoltaica de hasta 103,33 W/m2.

El enfriamiento radiativo ocurre cuando la superficie de un objeto absorbe menos radiación de la atmósfera y emite más. Como resultado, la superficie pierde calor y se puede lograr un efecto de enfriamiento sin necesidad de energía.

Los científicos explicaron que su sistema de enfriamiento de radiación diurna de tipo transmisión consta de una cámara hecha de etileno-tetrafluoroetileno (ETFE) y polidimetilsiloxano (PDMS) que se coloca encima de la célula solar. Estos materiales tienen una alta transmitancia solar y emisividad en el infrarrojo medio.

«Las células solares demuestran una importante absortividad en el infrarrojo medio a lo largo de la banda de luz solar», explicó el equipo. “Los materiales tradicionales de enfriamiento radiativo diurno exhiben una alta reflectividad dentro de la banda de luz solar (0,28 a 2,5 mm) y una alta emisividad en el infrarrojo medio en la ventana atmosférica de 8 a 13 mm. La compatibilidad del enfriamiento radiativo diurno con células solares para una conversión eficiente de energía ha planteado desafíos debido a la necesidad de reflejar la luz solar”.

Para superar estos desafíos, el equipo comenzó analizando grupos funcionales, lo que resultó en encontrar ETFE y PDMS como las mejores opciones. A continuación, se probaron varios espesores de películas de ETFE y películas de PDMS. Finalmente, el equipo decidió utilizar ETFE con un espesor de 150 mm como material de la capa superior de la cámara y PDMS con un espesor de 5 mm como material de la capa inferior de la cámara.

«Se utilizó una máquina de grabado láser para tallar dos paneles acrílicos, cada uno de los cuales medía 20 cm de largo y 12 cm de ancho, en un rectángulo vacío con dimensiones de 17 cm de largo y 10 cm de ancho en el centro» , dijeron los académicos. «Las películas de ETFE y PDMS se sujetaron entre los paneles acrílicos y se aseguraron con tornillos, creando una cámara de 5 mm de espesor entre las dos películas».

La cámara se colocó sobre una célula solar de silicio monocristalino con una eficiencia del 13%. Para optimizar la eficiencia del enfriamiento radiativo, una bomba de aire introduce aire a través de la entrada de la cámara y lo expulsa por el lado opuesto a un caudal de 20 L/min. Este sistema experimental se probó al aire libre en un día soleado de octubre en Nanjing, al este de China.

«El dispositivo demuestra una excelente estabilidad durante seis horas, exhibiendo una potencia de enfriamiento promedio de aproximadamente 40 W/m2», dijeron los científicos. “La potencia máxima fotovoltaica alcanza hasta 120 W/m2 al mediodía sin cámara; Sin embargo, este valor disminuye ligeramente a 103,33 W/m2 cuando se cubre con la cámara. Además, la eficiencia de conversión de energía de la célula solar es del 11,42%, en comparación con el 12,92% de la célula solar desnuda”.

Tras el experimento de la vida real, el equipo realizó una simulación multifísica utilizando el software COMSOL para ver si el sistema podía mejorarse. “Los resultados de la simulación indican que mejorar el caudal de aire dentro de la cámara de aire y reducir su absortividad en la banda de luz solar puede mejorar significativamente el rendimiento. Cuando la capacidad de absorción del enfriador cae al 1%, la potencia de enfriamiento radiativo puede alcanzar hasta 68,74 W/m2”, explicaron además.

El sistema fue presentado en “Enfriamiento radiativo diurno en tándem y generación de energía solar”, publicado en Informes Celulares Ciencias Físicas. El equipo incluía científicos de China. Universidad de Aeronáutica y Astronáutica de Nanjing y el Academia China de Ciencias.

Investigadores de Estados Unidos aplicaron recientemente el enfriamiento radiativo al enfriamiento de paneles solares. Universidad Jiao Tong de Shanghái es China, Universidad Purdué en los Estados Unidos, el Instituto Catalán de Nanociencia y Nanotecnología y el Instituto de Ciencia de Materiales en España, y el Universidad de Ciencia y Tecnología de Jordania y Colegio Australiano de Kuwait.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El controlador integra productos seleccionados de terceros en el ecosistema SolarEdge EMS conectándose al enrutador de Internet de un hogar a través de la red de área local (LAN). Puede comunicarse con inversores, cargadores de vehículos eléctricos, bombas de calor y servidores de SolarEdge.

Con sede en Israel borde solar está lanzando un nuevo producto de controlador en Europa, el administrador de energía inteligente de la compañía para energía solar residencial, ya que el negocio apunta a oportunidades en el segmento de sistemas de gestión de energía (EMS).

Christian Carraro, director general de SolarEdge en Europa, ha dicho revistapv que el sistema de gestión de energía pueda integrar y gestionar componentes energéticos en un hogar o empresa. «Estamos lanzando el One Controller para nuestra suite solar residencial y, literalmente, enviando los primeros envíos mientras hablamos, entre diciembre y enero», dijo.

El controlador integra productos seleccionados de terceros en el ecosistema SolarEdge EMS conectándose al enrutador de Internet del hogar a través de la red de área local (LAN). Luego, One Controller puede comunicarse con inversores, cargadores de vehículos eléctricos, bombas de calor y servidores de SolarEdge.

Carraro agregó que SolarEdge está desarrollando una oferta similar para el segmento comercial e industrial (C&I). «Tendremos un enfoque similar para los CeI», afirmó. «Tendremos un controlador para residencial y un controlador para C&I».

Ambos controladores se integrarán con un EMS administrado a través de One Platform de SolarEdge, con diferentes funciones disponibles según el segmento. La plataforma se implementará primero en el segmento residencial, afirmó Carraro, y luego el producto C&I.

«A fin de cuentas, aunque el concepto se lanzará en toda Europa, probablemente veremos diferentes aplicaciones», dijo Carraro. “Habrá algunos países que lo utilizarán para la tarifa dinámica y el tiempo de uso. [tariff] características, y habrá otros mercados donde lo utilizarán para la integración con otras tecnologías, con bombas de calor y cargadores de vehículos eléctricos”.

SolarEdge registró una pérdida neta de 1.200 millones de dólares en el tercer trimestre de 2024, atribuible principalmente a una amortización de 1.030 millones de dólares en activos en el equilibrio de la empresa. También ha anunciado Más de 1.000 pérdidas de empleo. en los últimos 12 meses.

Carraro, que fue nombrado director general para Europa en el verano de 2024, dijo que, además de generar ingresos, considera que su principal objetivo en el negocio es elaborar las mejores prácticas que puedan “ayudar a todos los países a brillar”.

«SolarEdge es uno de los principales actores del mercado europeo y, como tal, tenemos los mismos desafíos que los demás», afirmó. «El mercado europeo está estancado, eso no significa que sea pequeño, pero sí que claramente no creció desde la segunda mitad de 2023 y 2024».

El director general para Europa dijo que no espera un retorno al crecimiento galopante observado en el mercado de inversores en 2021 y 2022, pero añadió que las condiciones son adecuadas para un retorno a la «normalidad» en el segundo trimestre de 2025, ya que el El número de inversores mantenidos en inventario continúa disminuyendo.

“Cuando vemos los niveles de instalaciones en nuestro monitoreo, así como los informes que recibimos de otros canales, son mayores que el volumen que enviamos. Hay actividad continua en los niveles de stock de compensación. Debido a la estacionalidad, creo que a partir del segundo trimestre deberíamos llegar a una posición mucho más positiva”.

El GM para Europa también confirmó que a pesar del cierre de su negocio de celdas de baterías en Corea del Sur que respaldaba aplicaciones BESS no solares, el almacenamiento conectado a energía solar sigue siendo un “clave componente” del negocio SolarEdge.

Si bien SolarEdge puede estar vendiendo su planta de fabricación de celdas de batería de 2 GWh en Corea del Sur, la compañía sigue firmemente comprometida con sus operaciones de fabricación en Estados Unidos, según Carraro. “Para nosotros, es importante asegurarnos de que estamos produciendo productos seguros y de alta calidad. Queremos mantener la producción en los países occidentales. Hoy tenemos dos fábricas en Estados Unidos que reemplazarán algunas fábricas en otros lugares”. dijo Carraro.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Alemania instaló 16,2 GW de energía solar en 2024, lo que eleva la capacidad fotovoltaica a 99,3 GW a finales de diciembre de 2024, según la Agencia Federal de Redes (Bundesnetzagentur).

Imagen: Charlie Wilde, Pixabay

Delaware revista pv Alemania

Alemania desplegará 15,2 GW de nuevos sistemas fotovoltaicos en 2024, según la Bundesnetzagentur.

El país añadido 14,28 GW en 2023, 7,19 GW en 2022, 5,26 GW en 2021, 3,94 GW en 2019, 2,96 GW en 2018, y 1,75 GW en 2017. En diciembre de 2024, Alemania operaba más de 4 millones de sistemas fotovoltaicos con una capacidad combinada de 99,3 GW.

Dos tercios de los sistemas instalados en 2024 fueron conjuntos residenciales y comerciales, mientras que el resto fueron proyectos montados en el suelo. La Agencia Federal de Redes observará un ligero aumento en la producción bruta de almacenamiento solar.

«El notable crecimiento de la energía fotovoltaica continúa», afirmó Klaus Müller, presidente de la Bundesnetzagentur. «La nueva capacidad desplegada en 2024 vuelve a superar el récord anterior del año 2023».

Alemania generó 72,2 TWh de energía solar en 2024, lo que representa el 14% de su producción eléctrica total, según Instituto Fraunhofer ISE. La energía eólica siguió siendo la fuente principal, produciendo 136,4 TWh.

A pesar de un clima menos favorable, la generación fotovoltaica alcanzó un récord de 72,2 TWh, impulsado por una rápida expansión de la capacidad. Fraunhofer ISE informó que se utilizaron 12,4 TWh para autoconsumo solar, un aumento interanual del 18%. Julio marcó un récord mensual, con los sistemas fotovoltaicos generando 10,7 TWh.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El Puerto de Alicante instalará tres sistemas de 7 MW, cada uno compuesto por cientos de módulos de 14 kW ensamblados por la startup española GDV.

Imagen: GDV

Delaware Noticias ESS

La startup alicantina GDV Mobility presentó su “megabatería” G-One en la Cumbre Europea de Baterías del Mediterráneo celebrada en el puerto de la ciudad.

GDV dice que su sistema de 7 MW, ensamblado a partir de baterías usadas de vehículos eléctricos (EV), “destaca por ser el más barato, más rentable y más seguro en el [stationary energy storage] sector.»

“Las baterías remanufacturadas permiten una importante reducción de costos sin sacrificar el rendimiento, ofreciendo una alternativa más económica y amigable con el medio ambiente”, afirmó el director ejecutivo de GDV, Germán Agulló.

La startup dice que el G-One es entre un 40% y un 60% más barato que un sistema de almacenamiento de energía de batería estacionario convencional.

Para continuar leyendo, visita nuestro Noticias ESS sitio web.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El grupo Mer de Noruega ha instalado una estación piloto de carga de vehículos eléctricos con una cubierta de madera en Spittal an der Drau, Austria, en colaboración con socios locales.

MÁS Parque de carga Spittal Austria

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/12/Norica-MER-Ladepark-Spittal-AT-20240116-1690-©-HASSLACHER-Group- 600×300.jpg» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2024/12/Norica-MER-Ladepark-Spittal-AT-20240116-1690-©-HASSLACHER-Group-1200×600 .jpg» tabindex=»0″ rol=»botón»>

MÁS Parque de carga Spittal Austria

Imagen:Grupo HASSLACHER

La estructura fotovoltaica de madera de abeto cubre 18 puntos de carga rápida con una capacidad de hasta 400 kW.

Varias características de diseño de la marquesina fotovoltaica protegen el sitio del clima húmedo. El portavoz de Sonnenkraft dijo que Vivatro utilizó tecnología de sellado de acristalamiento seco superpuesto para asegurar los paneles, reemplazando los selladores de silicona convencionales. Este método ofrece protección contra la intemperie y requiere menos mantenimiento.

Los componentes de madera se instalarán dejando al menos 30 cm de espacio entre la testa y el nivel de agua, según el proveedor de madera austriaco Hasslacher Norica. Sus instalaciones en Stall im Mölltal y Hermagor, Austria, suministraon los materiales.

Hasslacher Norica también brindó apoyo logístico y componentes prefabricados modulares con base de chapa de acero, lo que permitió una construcción rápida de la estructura de madera en cuatro días, según la empresa.

El proyecto de la estación de vehículos eléctricos MER no fue el primer garaje fotovoltaico de madera de este tipo construido por Hasslacher Norica. Ha completado proyectos piloto para HyperNetz, con sede en Alemania Energie Baden-Württemberg (EnBW), instalando dos parques de carga rápida EnBW idénticos en Lichtenau y Nahetal, Alemania. También ha suministrado madera para una estación de carga de flotas de Vivatro en St. Veit an der Glan, Austria, y varios proyectos de estaciones de carga en el Reino Unido.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

En medio de precios récord para los módulos solares, el enfoque de la reducción de costos para los proyectos solares a escala de servicios públicos se está desplazando hacia los gastos de equilibrio del sistema (BoS) no relacionados con los módulos. Se espera que la transición de un voltaje de 1,5 kV a 2 kV en proyectos solares gane impulso hasta 2030.

Delaware revista pv edición impresa 24/12

La justificación para pasar de un voltaje de 1,5 kV a 2 kV en proyectos solares se basa en principios eléctricos, en particular la relación entre potencia eléctrica (P), corriente (I) y voltaje (V), expresada como P=IV. . Al aumentar el voltaje mientras se mantiene la corriente constante, se puede aumentar la producción de energía sin pérdidas adicionales. Se espera que esta transición produzca un aumento del 0,5% al ​​​​0,8% en el rendimiento energético de los sitios fotovoltaicos.

Los voltajes más altos se adaptan a cadenas de módulos más largos. Un sistema de 1,5 kV puede acomodar 33 módulos clasificados a 45 V de corriente continua, mientras que un sistema de 2 kV puede acomodar 44 módulos, lo que representa un aumento del 33 % en la capacidad de energía. Una longitud de cuerda más larga significa menos cuerdas. Esto ayuda a reducir el equilibrio eléctrico de los gastos del sistema, incluidos los costos de cajas de combinación, conectores y cableado, entre un 10% y un 15%. La cantidad de inversores necesarios también debería disminuir, ya que los voltajes más altos se adaptan a componentes electrónicos con mayor densidad de potencia.

Si bien los inversores de 2 kV cuestan más debido a la menor escala de fabricación de algunos componentes y al aumento de los requisitos de prueba, las perspectivas a largo plazo siguen siendo positivas. El cambio a 2 kV hará que los inversores tengan más densidad de energía, lo que ahorrará en carcasas, fusibles y otros componentes. Menos componentes de proyectos solares deben reducir los costos laborales y significar menores gastos de operación y mantenimiento (O&M). Eso podría significar, eventualmente, entre un 1% y un 2% menos de costos de capital, además de un mayor rendimiento energético.

Desafíos clave

Se deben abordar varios desafíos antes de que pueda ocurrir una adopción generalizada. El principal obstáculo es la disponibilidad de inversores de 2 kV, ya que hay que resolver numerosos desafíos técnicos. Actualmente, los componentes capaces de manejar 2 kV son limitados y los fabricantes de inversores tienen que lidiar con problemas relacionados con cajas combinadoras, aislamiento externo, fusibles e interruptores. Se debe realizar una cantidad sustancial de pruebas de hardware y software para garantizar la confiabilidad y el funcionamiento seguro de los inversores de 2 kV en la red. También existen mayores desafíos relacionados con la adopción de 2 kV para inversores de cadena a gran escala que para los inversores centrales, debido a la mayor densidad de potencia de los primeros. Esto puede retrasar ligeramente la adopción de inversores string de 2 kV, en comparación con los dispositivos centrales.

La disponibilidad limitada de estándares es otra barrera importante que obstaculiza el desarrollo y la adopción de productos de 2 kV. Recientemente, JinkoSolar Holding Co. Ltd. se convirtió en la primera empresa de módulos solares en recibir la certificación de UL Solutions Inc. para sus módulos de 2 kV. Sin embargo, llevará tiempo hasta que surjan procesos de certificación completamente formados y aún más hasta que los fabricantes alineen sus productos con estos estándares. Convencer a los desarrolladores para que inviertan en proyectos de 2 kV plantea otro desafío, ya que estos nuevos sitios serán inherentemente más riesgosos que los proyectos estándar de 1,5 kV, con costos más altos y una selección más pequeña de proveedores.

Para los módulos, el aumento de voltaje requiere una mayor distancia de fuga entre las partes eléctricas, lo que puede reducir ligeramente la eficiencia de un módulo y aumentar su costo por vatio. Además, los fabricantes de módulos se centran actualmente en el cambio a la tecnología de tipo n, junto con márgenes reducidos debido al exceso de oferta de paneles, lo que disminuye su disposición a invertir en nueva tecnología. Sin embargo, la transición a 2 kV no es particularmente difícil para los módulos, en comparación con los desafíos que enfrentan los fabricantes de inversores, ya que la mayoría de los grandes módulos fotovoltaicos comerciales y de servicios públicos ya utilizan una estructura de vidrio, lo que proporciona suficiente aislamiento y protección para voltajes más altos.

Previsión tecnológica

Es probable que China y Estados Unidos sean las primeras regiones en adoptar la tecnología de 2 kV. China sirve como campo de pruebas para los mayores fabricantes de servicios públicos del mundo y se espera que lleve a cabo numerosos proyectos piloto para garantizar la confiabilidad de los componentes antes de que los fabricantes se expandan a los mercados internacionales. Los plazos de entrega más rápidos en China también facilitarán una entrada más rápida al mercado para productos de 2 kV. Se espera que Estados Unidos haga lo mismo: GE Vernova lanzó recientemente un inversor de 2 kV, lo que marca un paso significativo en el mercado.

Hará falta tiempo para que los desarrolladores y las empresas de servicios de ingeniería, adquisiciones y construcción se acostumbren a los productos de 2 kV, además de plazos más largos para tomar decisiones de inversión en Estados Unidos. Partiendo del precedente histórico del cambio de 1 kV a 1,5 kV, donde los envíos de inversores de 1,5 kV aumentaron dos años después de los primeros proyectos piloto, se prevé que la adopción más amplia de la tecnología de 2 kV llevará varios años. S&P Global pronostica que los productos de 2 kV crecerán de menos de 5 GW, en 2026, a 380 GW en 2030, lo que representará el 77% de los proyectos solares a escala de servicios públicos en todo el mundo para ese momento.

El cambio a 2 kV presenta una oportunidad prometedora para reducciones a largo plazo en los costos de equilibrio del sistema, inversores, mano de obra y operación y mantenimiento, gracias a diseños de sitio más simples y pequeños aumentos en el rendimiento energético. La colaboración de toda la industria es esencial para superar los desafíos técnicos, establecer estándares e impulsar la adopción. Una mayor conciencia de este salto tecnológico es crucial para identificar ahorros de costos adicionales en el equilibrio de los sistemas. Si bien persisten desafíos técnicos, particularmente en el diseño de productos inversores de 2 kV, S&P predice que la energía solar a escala de servicios públicos comenzará a hacer la transición a 2 kV entre 2026 y 2027, particularmente en Estados Unidos y China.

Sobre los autores: Liam Coman es analista de investigación solar en S&P Global Commodity Insights y cubre las cadenas de suministro de inversores solares, inversores de equilibrio del sistema e inversores de almacenamiento de energía. Coman trabaja con proveedores para analizar tendencias, pronósticos y evaluar la industria de los inversores solares. Anteriormente trabajó para una consultoría de ingeniería especializada en regulación ambiental y cumplimiento de políticas.

SiqiHe es analista principal del equipo de tecnología de energía limpia de S&P Global Commodity Insights, responsable de la investigación de la cadena de suministro solar, fotovoltaica e inversores de almacenamiento de energía. Trabajó previamente para Wood Mackenzie Power & Renewables en Nueva York y pasó cuatro años como analista financiero en PetroChina en Beijing.

Karl Melkonian es analista principal del equipo de tecnología de energía limpia, y se especializa en investigación y análisis del mercado de energía y energías renovables, particularmente para los mercados fotovoltaicos y las empresas solares. Su enfoque incluye análisis financiero, tecnología y materiales de fabricación, y las tendencias y requisitos de la industria fotovoltaica.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Elektroprivreda Crne Gore (EPCG) de Montenegro ha subido la apuesta por su primera licitación de almacenamiento de energía en baterías.

Imagen: EPCG

Delaware Noticias ESS

En una medida pionera para las empresas de servicios públicos de propiedad estatal en los Balcanes, la mayor empresa de energía de Montenegro, EPCG, planea lanzar un ejercicio de adquisición de almacenamiento de energía en baterías a gran escala para fines de 2024.

«A finales de este año, EPCG abrirá una convocatoria pública para el suministro de 300 MWh de sistemas de baterías», dijo el jueves pasado Milutin Djukanovic, presidente del consejo de administración de EPCG.

En septiembre, EPCG dijo que busca entregar 185 MWh de capacidad de almacenamiento de energía en baterías. en cuatro ubicaciones. Su objetivo declarado era utilizar la infraestructura existente para la conexión a la red.

Para continuar leyendo, visita nuestro Noticias ESS sitio web.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El proveedor estadounidense de semiconductores Onsemi ha presentado módulos de energía integrada de carburo de silicio para sistemas fotovoltaicos a escala de servicios públicos. Dado que los nuevos módulos aumentan la potencia del inversor solar de 300 kW a 350 kW y pesan 245 gramos.

Imagen: Onsemi

Onsemi ha lanzado una serie mejorada de módulos de energía para impulsar la generación y el almacenamiento solar a escala de servicios públicos.

La nueva línea consta de módulos híbridos de energía integrada (PIM) de silicio y carburo de silicio en un paquete F5BP que se puede integrar con inversores de solar o aplicaciones de sistemas de almacenamiento de cadena de energía (ESS).

«Los F5BP-PIM están integrados con IGBT FS7 de 1050 V y el diodo EliteSiC D3 de 1200 V para formar una base que facilita la conversión de energía de alto voltaje y alta corriente al tiempo que reduce la disipación de energía y aumenta la confiabilidad» , dijo la compañía en un comunicado. «Los IGBT FS7 ofrecen bajas pérdidas de apagado y reducen las pérdidas de conmutación hasta en un 8%, mientras que los diodos EliteSiC brindan un rendimiento de conmutación superior y un menor parpadeo de voltaje en un 15% en comparación con las generaciones anteriores».

Los PIM cuentan con un diseño de abrazadera de punto neutro (INPC) tipo I para el módulo inversor y una topología de condensador volante para el módulo elevador. También tienen un diseño eléctrico optimizado y sustratos avanzados de cobre de unión directa (DBC), lo que reduce la inductancia parásita y la resistencia térmica para mejorar el rendimiento.

«Una placa base de cobre reduce aún más la resistencia térmica del disipador de calor en un 9,3%, lo que garantiza que el módulo permanezca frío bajo cargas operativas elevadas», añadió Onsemi. «Esta gestión térmica es crucial para mantener la eficiencia y la longevidad de los módulos, lo que los hace altamente efectivos para aplicaciones exigentes que requieren una entrega de energía confiable y sostenida».

Los módulos funcionan a temperaturas que oscilan entre -40 C y 150 C en condiciones de conmutación y pueden soportar hasta 125 C en almacenamiento. Con un peso de 245 gramos cada uno, los módulos cuentan con pines de soldadura, no contienen plomo (Pb) ni haluros y ofrecen una mayor densidad de potencia y eficiencia en comparación con los modelos anteriores. Esta mejora aumenta la potencia del sistema de inversor solar de 300 kW a 350 kW dentro del mismo espacio.

«Esto significa que un parque solar a escala comercial de un gigavatio (GW) de capacidad que utilizar módulos de última generación puede lograr un ahorro de energía de casi 2 MW por hora o el equivalente a alimentar a más de 700 hogares por año», dijo la compañía. «Además, se requieren menos módulos para alcanzar el mismo umbral de potencia que la generación anterior, lo que puede reducir los costos de los componentes del dispositivo de energía en más de un 25%».

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Los interconectores desempeñarán un papel más destacado en la electricidad europea en la década de 2030, escribe Matthew Lynas. Hay planes en marcha para aumentar los vínculos entre las naciones europeas y hay esperanzas ambiciosas de conexiones intercontinentales.

El norte de África ofrece irradiancia solar en abundancia. Las naciones africanas mediterráneas, en el “cinturón solar”, cuentan con un perfil generacional menos intermitente que el de Europa. Los inversores ven potenciales. Un análisis de Rystad Energy encontró que los interconectores propuestos entre el norte de África y Europa podrían transferir energía desde 24 GW de capacidad de generación. Parece poco probable que todo esto se materialice.

Los interconectores que unen África y Europa no son una idea nueva. Actualmente existen dos cables de alta tensión que unen Marruecos con España, cada uno con 700 MW de capacidad de transmisión. Se está construyendo un tercer cable que unirá las dos naciones y se han planificado conexiones mucho más largas que atraerán respaldo financiero.

Nivedh Das Thaikoottathil, analista senior de energías renovables y energía de Rystad Energy, destacó tres proyectos importantes: Xlinks, que conecta el Reino Unido y Marruecos; la iniciativa GREGY entre Grecia y Egipto; y Elmed uniéndose a Túnez e Italia.

«La razón por la que digo que estos interconectores se destacan del resto es en términos de desarrollo y financiación de proyectos», dijo Thaikoottathil. revistapv. “Si nos fijamos en Xlinks, se estima que el proyecto costará entre 27.000 y 30.000 millones de dólares, pero han podido recaudar un poco de inversión, creo que 110 millones de dólares, y la mayor parte se destinará a estudios a lo largo de la ruta planificada. del cable”, dijo.

Es posible que los promotores del proyecto hayan logrado avances en el ámbito financiero, pero se necesitará más que dinero para vincular el norte de África con Europa. Thaikoottathil advirtió que, en la actualidad, el suministro mundial de cables submarinos de alto y extra alto voltaje se sitúa en alrededor de 9.000 kilómetros por año. Eso no será suficiente. Sin embargo, teniendo en cuenta la capacidad de fabricación en desarrollo anunciada, que podría alcanzar los 16.000 km por año para 2030, la demanda de los proyectos de Rystad Energy podría llegar a los 75.000 km para entonces.

Es un gran desafío pero, si se supera, existe un potencial significativo para que los interconectores agreguen mayor diversidad a las redes europeas en la década de 2030, reduciendo la dependencia de las importaciones de gas en el proceso.

“Si se incluyen Xlinks, GREGY y Elmed-Tunita, básicamente el total suma 7,2 GW [of capacity]”, dijo Thaikoottathil. “Esto se traduciría esencialmente en la exportación de más de 50 TWh a Europa (anualmente). Eso supone que estos interconectores funcionan a su máxima capacidad. En términos de diversificación, es un punto de partida porque la mayoría de estos países (es decir, Reino Unido, Grecia e Italia) que reciben esta energía tienen gas que representa al menos un tercio de su combinación de energía”.

Desde Marruecos hasta Reino Unido

Marruecos era la única nación africana con interconectores que llegarían a Europa en 2024. Dos conexiones con España están en funcionamiento, una tercera en camino, y un proyecto ambicioso con inversores creíbles ha propuesto un vínculo sin precedentes con el norte de Europa.

Xlinks sería el interconector más grande del mundo, si llega a concretarse. El plan consiste en licitar 4.000 kilómetros de cable de corriente continua de alto voltaje (HVDC) desde Marruecos hasta el Reino Unido, explotando el abundante potencial renovable del primero. Se han logrado avances. Xlinks ha acordado conexiones a la red para dos interconectores de 1,8 GW con el operador del sistema eléctrico británico. En Marruecos, Xlinks planea 7 GW de capacidad solar y 4,5 GW de energía eólica junto con una batería de 22,5 GWh, según Rystad Energy.

El proyecto ha atraído a inversores. En 2023, la empresa eléctrica francesa Total Energies invirtió 20 millones de libras esterlinas (26 millones de dólares) y Octopus Energy y la Compañía Nacional de Energía de Abu Dhabi están a bordo.

Dave Lewis, exjefe del gigante de supermercados británico Tesco, preside el proyecto. Otras figuras clave incluyen al vicepresidente Paddy Padmanathan, el ex presidente y director ejecutivo del desarrollador árabe ACWA Power y el director ejecutivo Simon Morrish.

La energización está muy lejos, pero Xlinks ha dado pasos hacia la aprobación de la planificación. El proyecto requerirá una orden de consentimiento de desarrollo (DCO) del gobierno del Reino Unido para aproximadamente 370 km de cables HVDC que se tenderían dentro de aguas del Reino Unido, así como los últimos 14 km de cableado terrestre que conectará las energías renovables marroquíes con la subestación Alverdiscott de 400 kV. en Devon, Inglaterra. Se esperaba que Xlinks presentara su solicitud de DCO en noviembre de 2024, ya que revistapv fue una imprenta. Si el gobierno del Reino Unido acepta la solicitud, seguirá un largo período de examen.

Si se obtiene el consentimiento para la planificación, persisten otros obstáculos. Obtener suficiente cable podría plantear desafíos. Para combatir esto, el promotor del proyecto ha creado una empresa independiente, XLCC, encargada de establecer una planta de fabricación de cables submarinos HVDC. XLCC obtuvo en 2022 el consentimiento de planificación del Consejo de North Ayrshire, Escocia, para construir una fábrica de cables en un antiguo puerto de carbón y hierro situado a tiro de piedra de la central nuclear de Hunterston B, que dejó de generar electricidad en 2022 .

La planta de cables XLCC también cuenta con el apoyo del Estado. El 26 de septiembre de 2024, el Banco de Infraestructura del Reino Unido (UKIB) anunció un paquete de financiación que comprende una inversión de 20 millones de libras esterlinas, con la opción de invertir otros 67 millones de libras esterlinas en caso de que XLCC alcance hitos específicos de desarrollo y financiación.

En una declaración, John Flint, director ejecutivo de UKIB, señaló que las proyecciones de la industria indican que la demanda de cables submarinos pronto superará la capacidad de la cadena de suministro.

«Nuestro apoyo a XLCC tiene como objetivo brindar confianza al mercado, atrayendo inversión privada a este sector para impulsar la capacidad de producción en una industria que tendrá un impacto significativo en la transición del Reino Unido hacia cero emisiones netas», dijo Flint.

Desde Túnez hasta Italia

Un vínculo planeado desde hace mucho tiempo entre el norte de África e Italia continúa generando debate, y las partes interesadas de la industria en ambos lados del Mediterráneo están deseosas de que el proyecto de interconexión de Elmed tenga éxito. Las grandes declaraciones han estado respaldadas por mucho dinero y los involucrados esperan que la puesta en servicio se produzca ya en 2028.

El proyecto Elmed lleva años en marcha y desde entonces ha conseguido un importante apoyo estatal. escribe Blathnaid O’Dea. Se trata de licitar un cable submarino HVDC de 220 kilómetros y 600 MW de capacidad entre Túnez y Sicilia, uniendo la península tunecina de Cabo Bon con la costa sur de la isla más grande de Italia.

Los desarrolladores del proyecto pretenden completar el interconector para 2028, aunque no está claro cómo afectarán el cronograma las elecciones de 2024 en Túnez, que han causado perturbaciones políticas y económicas. El Banco Europeo de Inversiones (BEI), uno de los principales patrocinadores del proyecto, duplicó la fecha límite de 2028 en un comunicado a pv magazine. El banco también afirmó que el proyecto aún se encuentra en la fase de licitación y que la adquisición se está llevando a cabo mediante un procedimiento negociado según la ley italiana. Información como la fecha de presentación de la oferta es confidencial en este tipo de procedimiento.

A pesar de sus desafíos, el gobierno de Túnez y su operador de sistema de transmisión (TSO), STEG, parecen decididos a poner a Elmed en funcionamiento.

El TSO italiano Terna está motivado de manera similar y se ha comprometido a brindar apoyo de capacitación a los tunecinos sobre las nuevas tecnologías que Elmed traerá a la región.

Hay mucho en juego en este proyecto de interconexión. En 2017, Elmed se incluyó en la lista de proyectos de interés común de la Unión Europea y en 2022 siguió un impulso de financiación de 307 millones de euros (334 millones de dólares) a través del Fondo Conectando Europa (CEF). Esto convierte a Túnez en uno de los primeros estados no miembros de la UE en recibir dinero del MCE. En total, se han invertido casi mil millones de euros en el desarrollo de Elmed.

Para la Unión Europea, el interconector se suma a la diversidad de una red que a los responsables de las políticas les gustaría ver reducir su dependencia de las importaciones de gas. En Túnez, el proyecto es parte de una colaboración energética más amplia con la Unión Europea con la generación renovable y el hidrógeno verde en el centro.

En junio de 2024, Belhassen Chiboub, directora general de electricidad y transición energética del Ministerio de Industria, Energía y Minas de Túnez, describió el proyecto Elmed como “estratégico” para las relaciones internacionales. La Unión Europea y Túnez han firmado un memorando de entendimiento para «fortalecer la cooperación en energías renovables».

Egipto a Grecia, vía Chipre

Egipto y Grecia pueden estar separados por el mar, pero las islas entre ellos ofrecen opciones de interconexión atractivas. Se han propuesto múltiples proyectos para conectar los dos países, pero en 2024, la suerte ha sido mixta en términos de progreso.

Anunciado por primera vez en 2017, el interconector EuroAfrica es un tramo planificado de 2 GW y 1.400 km de cables submarinos que van desde Egipto a Chipre y luego de Chipre a Creta. escribe Mark Hutchins. En 2021 se construyó un cable que conecta Creta con el continente griego, que también se ampliará para gestionar las capacidades adicionales de los interconectores EuroÁfrica y el Gran Mar entre Creta y Chipre.

La primera etapa del interconector, la mitad de la capacidad total planificada, estaba inicialmente prevista para 2023, pero la empresa detrás del proyecto ha retrasado la fecha hasta 2029. La primera etapa tiene un coste de inversión declarado de 2.500 millones de euros y su La situación financiera actual no está clara.

Los informes de 2023 sugieren que el proyecto está siendo sometido a nuevos estudios de viabilidad tras una crisis financiera y la devaluación de la moneda en Egipto. Múltiples solicitudes a la empresa detrás de EuroAfrica Interconnector para obtener una actualización sobre el proyecto no han recibido respuesta.

Chipre es actualmente el único Estado miembro de la UE sin interconexión con otras redes eléctricas de la UE y todavía depende en gran medida de los combustibles fósiles para obtener electricidad. Para la Unión Europea, integrar Chipre y reducir tanto las emisiones como las facturas de energía en la isla se encuentran entre los objetivos clave del proyecto.

Para Egipto, el interconector EuroÁfrica es parte de una estrategia para posicionar al país como un centro energético regional, además de aprovechar su abundante sol suministrando energía a Europa a partir de grandes proyectos fotovoltaicos construidos en sus vastos desiertos. La vecina Arabia Saudita también está tratando de participar. El país de Oriente Medio ya tiene en construcción un cable de 3 GW que lo conectará a la red egipcia y está realizando estudios de viabilidad para un cable directo que conectará las redes de Grecia y Arabia Saudita.

Mientras tanto, el proyecto GREGY sigue desarrollándose. Propone una interconexión de 3 GW y 950 km entre Grecia y Egipto en una ruta que rodea la costa occidental de Creta. En el otoño de 2023, el proyecto se incluyó en el borrador de la lista de “proyectos de interés mutuo” de la Unión Europea y, a principios de 2024, se iniciaron consultas para informar los estudios finales.

El desarrollador del proyecto Copelouzos Group ha afirmado que el interconector será abastecido por plantas renovables que construirá y operará en Egipto, con una capacidad de generación total de 9,5 GW.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La francesa TotalEnergies comprará la empresa alemana de energías renovables VSB Group por 1.570 millones de euros (1.650 millones de dólares). También acordó vender el 50% de una cartera de energía solar y almacenamiento de 2 GW en Texas por 800 millones de dólares.

Imagen: Jadon Kelly, Unsplash

Energías Totales ha acordado comprar el desarrollador alemán de energías renovables VSB Group al gestor de activos suizo Partners Group.

La transacción, por un valor de 1.570 millones de euros en valor de capital y préstamos para accionistas, sigue sujeta a la aprobación de las autoridades de control de fusiones aplicables.

VSB tiene más de 475 MW de capacidad renovable en funcionamiento o en construcción, la mayor parte de los cuales se encuentra en Alemania y Francia. Tiene otros 18 GW de tecnologías eólicas, solares y de almacenamiento en baterías en proyecto en países como Alemania, Polonia y Francia.

«En línea con nuestra estrategia, estas transacciones nos permitirán optimizar nuestra asignación de capital en energías renovables y contribuirán a mejorar la rentabilidad de nuestro negocio de Energía Integrada». dijo Stéphane Michel, presidente de gas, energías renovables y energía de TotalEnergies. «Damos la bienvenida a los 500 empleados del Grupo VSB y su experiencia líder en energía eólica terrestre en los mercados europeos».

TotalEnergies también ha firmado un acuerdo con fondos gestionados por Apollo para vender el 50% de una cartera de 2 GW de proyectos de almacenamiento de energía solar y de baterías en Texas. La transacción proporciona 800 millones de dólares en efectivo a TotalEnergies, que consiste en 550 millones de dólares de capital de Apollo y 250 millones de dólares de refinanciación de préstamos de accionistas.

TotalEnergies tiene actualmente 24 GW de capacidad renovable instalada bruta y apunta a agregar 11 GW para 2025, con planes de alcanzar 100 GW para 2030.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!