Un equipo de investigadores en Canadá ha desarrollado el registrador de datos resistivo abierto Jericho, una plataforma de monitoreo fotovoltaico (PV) de acceso abierto que integra hardware de adquisición y procesamiento de datos, un marco de software y una gama completa de sensores. Diseñado principalmente para aplicaciones agrícolas, el sistema tiene un costo total estimado de alrededor de $2,000.

Investigadores de universidad occidental en Canadá, en colaboración con Jericho Lab, un proveedor de soluciones de monitoreo ambiental, han desarrollado una novedosa plataforma de monitoreo modular de código abierto para experimentos de energía solar fotovoltaica al aire libre a largo plazo.

Llamado Jericho Open Resistive Data Logger (RDL), se afirma que el sistema cierra la brecha entre los dispositivos de bricolaje (hágalo usted mismo) de bajo costo y los sistemas de adquisición de datos (DAQ) patentados y de alto costo.

«Trabajamos con Jericho Lab para desarrollar aún más su producto comercial RDL y crear un sistema de monitoreo solar fotovoltaico de última generación a una fracción del costo de los DAQ patentados en el mercado», dijo el autor correspondiente Joshua M. Pearce. revistapv. «Este sistema está diseñado principalmente para proyectos agrivoltaicos, un campo que está realmente en su infancia en Canadá. Por lo tanto, hay muchos tipos nuevos de sistemas para explorar».

En un artículo sobre hardware, el grupo proporcionó detalles precisos sobre cómo configurar el sistema y también publicó su repositorio de archivos fuente. Jericho Open RDL (JOR) se compone de tres sistemas centrales: el hardware de adquisición y procesamiento de datos; el conjunto de sensores para mediciones experimentales; y el marco de software integrado responsable de la operación del sistema, la comunicación del sensor a DAQ y la gestión del almacenamiento de datos local.

La plataforma de adquisición y procesamiento de datos consta de un RDL emparejado con un escudo de extensión I2C, un microcontrolador Arduino Nano, una computadora de placa única Raspberry Pi 4 y los accesorios estructurales y eléctricos necesarios que respaldan el funcionamiento del concentrador central.

La plataforma utiliza sensores de temperatura del aire, humedad, irradiancia solar, velocidad del viento y temperatura fotovoltaica. También incluye cámaras de imagen de luz visible e infrarroja, así como un transductor de efecto Hall para medición de corriente continua. Además, el grupo cuenta con conectores, carcasas, escudos y soportes impresos en 3D.

«La Raspberry Pi ejecuta un sistema operativo Pi de 64 bits y ejecuta scripts Python 3 junto con el firmware Arduino. Maneja entrada serie USB, captura de imágenes, monitoreo del sistema y organización de datos. La arquitectura proporciona un marco modular en el que se pueden incorporar sensores o servicios adicionales con cambios mínimos en los procesos existentes», explicaron los académicos. «El firmware del Nano comprende declaraciones de variables, inicialización y un bucle de adquisición continua. Los parámetros del usuario y los parámetros del programador residen en la EEPROM y se cargan en el arranque».

Overview of the system

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-600×354.jpg» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-1200×709.jpg» tabindex=»0″ role=»button» class=»size-medium wp-image-323525″ src=»https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-600×354.jpg» alt=»» width=»600″ height=»354″ srcset=»https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-600×354.jpg 600w, https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-1200×709.jpg 1200w, https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg-768×454.jpg 768w, https://www.pv-magazine.com/wp-content/uploads/2025/11/1-s2.0-S2468067225000987-ga1_lrg.jpg 1500w» sizes=»(max-width: 600px) 100vw, 600px»>

Descripción general del sistema

Imagen: Western University, HardwareX, CC BY 4.0

En total, las piezas del sistema tenían un precio total de 2.827,74 CAD (2.020,21 dólares). El artículo más caro fue una cámara térmica con carcasa de ABS, con un precio de 999 CAD, seguida de un piranómetro de celda de silicio con un precio de 582,62 CAD y una cámara Reolink con una carcasa de ABS con un precio de 199 CAD. El JOR se verificó de dos maneras: con el sensor inteligente Lufft WS 501 disponible comercialmente para garantizar exactitud y precisión, y con un segundo JOR para evaluar la coherencia del rendimiento entre dispositivos.

Los datos para la comparación con el Lufft se recopilaron entre el 22 y el 26 de agosto de 2025. La comparación entre dispositivos se adquirió del 4 al 11 de julio de 2025. Todas las pruebas se realizaron al aire libre en la Estación de Campo Occidental de Ciencias Ambientales como parte de los experimentos al aire libre de Western Innovation for Renewable Energy Deployment (WIRED) en Ilderton, Ontario, Canadá.

«La comparación estadística de irradiancia, humedad relativa, temperatura y velocidad del viento se comparó con un sistema patentado y se encontró que estaba dentro de las diferencias aceptables para la validación, aunque se encontró que la velocidad del viento tenía la desviación más alta», afirmaron los investigadores. «Dos unidades independientes de código abierto confirman una excelente repetibilidad entre dispositivos en todas las variables medidas».

Para concluir, Pearce dijo que «fue reconfortante trabajar con un socio de la industria que buscaba impulsar la ciencia y ayudarnos a obtener los mejores datos posibles. Estamos implementando diez de los RDL en una amplia gama de aplicaciones agrivoltaicas, flotantes y de generación de H2, y experimentos BIPV. Los estamos utilizando para probar nuevos bastidores fotovoltaicos de código abierto y nuevos tipos de energía agrivoltaica».

El sistema fue descrito en “Registrador de datos resistivo abierto Jericho: una estación meteorológica modular de código abierto y un sistema de monitoreo para la experimentación solar fotovoltaica en exteriores a largo plazo”, publicado en HardwareX.

Los investigadores en Australia Han desarrollado un Método de Arquitectura Basado residual en la Red residual Simplificado para filtro el Ruido de Las Ágenes de Electroluminiscencia de Módulos Fotovoltaicos. Según Los Informes, La Técnica Propuesta Mejora la Precisión y Eficiencia de los Sistemas de Inspecciónomatizados para las plantas fotovoltaicas a Escala de Servicios Públicos.

Un Grupo de Científicos Dirigidos por Investigadores de la Universidad de Nueva Gales del Sur (UNSW) en Australia ha desarrollado un Nuevo Método de Aprendizaje Profundo para denominar im ágenes de electroluminiscencia al aire libre (el) de módulos fotovoltaicos.

Apodado SimpleReSnet, El Método Novedoso se Basa en una arquitectura basada en Red residual (resnet) simplificada, que utiliza conexiones residuales para Permitir que las -las redes neuronales aprendan de manera más efectiva.

«Medianecio el Uso de Un Modelo de Visión por Computadora Personalizada, que presenta una arquitectura de rojo profundo convolucional neuronal, podemos mejorar la calidad de la renovacióna de los conjuntos de datos de im ágenes, en particular al mantener importantes casterterías de altto de altto de la altada contrasta la certaste de la altada de la altada contrasta la certaste de la altada de la altura de la altina de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altina de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altura de la altera de la altina de la altina de la altura de la altura de la altera de la altura de la altura de la altura de la altura de la altura de la mantener. Diagnóstico «, Dijo El Autor correspondiente Brendan Wright. Revista Fotovoltaica. «El Desempeño de Nuestra Metodología excede los intentos anterior y los algoritmos de desoción más Generales».

La Nueva metodología consiste en una capa convolucional de entrada con ocho filtros, un solo bloque residual y una capa convolucional de salida. El bloque residual, un su vez, contiene dos capas convoluciones 3 × 3 con ocho filtros cada una. El Modelo Fue Abrenado, Validado y Probado en 627 IMAGENES, CON UNA RELACIÓN 7: 2: 1.

El Conjunto de Datos consistencia en im ágenes de Luminiscencia en Escala de Grises de Módulos PV Monocristalinos de Células Completas TOTRALAS Y MEDIOS CÉLULA, CAPTURADAS EN INTERIERES CON UNO SESGO DE 100% Y 10% DE LA CORTIENTE DE CORTOCIRITO DEL MÓDULO. SE acordgaron tres tipos de ruidos: gaussianos, poisson y sal y pimienta, un esas im ágenes, solas y juntas, utilizando modelos matemós. Finalmente, se combinaron pares de im ágenes de Limpieza ruidosa para el Uso del Modelo.

Schematic of the denoising methood

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-600×188.jpg» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-1200×376.jpg» tabindex=»0″ role=»button» class=»size-medium wp-image-305111″ src=»https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-600×188.jpg» alt=»» width=»600″ height=»188″ srcset=»https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-600×188.jpg 600w, https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-1200×376.jpg 1200w, https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-768×240.jpg 768w, https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-1536×481.jpg 1536w, https://www.pv-magazine.com/wp-content/uploads/2025/06/1-s2.0-S0927024825003514-gr1_lrg-2048×641.jpg 2048w» sizes=»(max-width: 600px) 100vw, 600px»>

Esquema del Método de Renovacia

Imagen: Universidad de Nueva Gales del Sur, Materiales de Energía Solar Y Células Solares, CC Por 4.0

«Para la comparación de Referencia, se Aplicó el algoritmo bm3d, un Método de Renoización Tradicional de Última generación. 160/255 Para Un Rendimiento Óptimo «, Dijeron Los Científicos. «Además, LOS Resultados se compararon con el modelo de Renoising a un nivel basado en Rennet34. Aunque Este Modelo Fue Diseñado y AreRenado Para Células Fotovoltaica individuales, SE Adaptó Aquí para procesar im ágenes de Módulos Completos, resaltando la necesida Urgentes. de Módulo «.

SE Descubrio que la Arquitectura SimpleReSnet Demuestra un mejor Rendimiento de Renovació que los Puntos de Referencia. Ha Logrado un valor medio de relación Señal / Ruido de la Señal a Ruido (PSNR) de 33.56 dB y un valor de medida del Índice de Similitud Estructural (SSIM) de 0.84. BM3D, por ootro -Lado, LOGRÓ 31.48 dB y 0.80, Respectivamete, Mientras que el Enfocque de desocuaciónis un Alcanzó celular nivel 28.42 dB y 0.62, respectivo. «Capacidos de Estas desarrolladas contribuyen un mejorar la precisión y eficiencia de los sistemas de inspección automatizados para las plantas fotovoltaicos a Escala de Servicios Públicos», Señalaron Los Académicos.

El Análisis También Mostró que la Velocidad de Procesamiento del Método Estaba Por DeboJo de 0.2 Segundos por Imagen. «LOGRAMOS UN DRAMÁTO BENECIO DE TIempO/COSTO DE CÁLCULO AL USAR ESTE MODELO MÁS ENFOCADO, REDUCIENDO EL TIempO DE PROCISAMIENTO DE IMÁGENES ÚNICAS A MENOS DE 1 SEGUNDO, UNO ORDEN DE MAJORA DE MAGNITUIM EN COMPARACIÓN HACE QUE ESTA METODOLOGÍA Mar Factible para aplicaciones de Procesamiento en tiempo real «, Agregó Wright.

«Tenemos la intención de continuar optimizando el rendimiento de esta clase de modelos, a través de mejoras en los métodos de arquitectura y capacitación, pero también centrarnos en la generalización y la aplicación a técnicas de diagnóstico adicionales, incluidas las Imagenes infrarrojas y de Fotoluminiscencia, Donde Ya Hemos Visto Resultados Prometedores «, Concluyón Wright. «Esperamos que Nuestra Metodología General de Aprendizaje Autico Permita Avances Significaciones en el Monitoreeo y El Análisis de Los Módulos Solares, Con un impacto positivo y práctico en la industria».

La Nueva Técnica se presente en «Metodología de Denoising Robusta Para Imagenes de Electroluminiscencia Exterior de Módulos Fotovoltaicos utilizando Aprendizaje Profundo«, Publicado en Materiales de Energía Solar y Células Solares. CientÍFOS DEL Universidad de Nueva Gales del Sur en Australia y el Universidad Técnica de Dinamarca Colaborado en el Estudio.

Un Equipo de Investigadores en Argelia Ha Diseñado Un Nuevo Testbed y una Nueva Ley de Aceleracia que explica tanto la Velocidad del viento como densiDad de arena. La Nueva Metodología se Probó en Cuatro Módulos Fotovoltaicos y Mostró una Vida útil de Hasta 47 Años en Términos de Impacto de Arena.

Los Científicos de Argelia Han Propucción una Nueva Prueba de PrueBa de Envejecimento acelerado para módulos fv y desarrollaron una nueva ley de aceleración para la degradación de la erosión de la arena.

«A diferencia de los modelos existentes, nuestra investigación introduce una ley diseñada específicamente para la erosión de la arena, incorporando la velocidad del viento y la densidad de arena para predicciones de vida útil más precisas en entornos desérticos», dijo el autor correspondiente, Abdelkader Elkharraz, dijo Revista Fotovoltaica. “Uno de los factores más perjudiciales que afectan la confiabilidad del módulo fotovoltaico en entornos del desierto es la erosión de la arena. El Bombardeo Constante de Partículas de Arena, Impulsadas por Fuertas vientes, Puede Causar la degradacia Mecánica y Óptica de la Superficie del Módulo. ESTA DEGRADACIÓN SE MANIFIESTA DE VARIAS MANERAS, INCLUIDA LA ABRASIÓN DE LA CAPA ProtectorA de Vidrio, El Rascado del Recubrimiento antirreflectante y la acumulaciónón de Polvo y Esbros, Todos Contribuyendo a Una Reducción de la Transmisión de la Luze.

La Prueba de Prueba Personalizada Que Diseñó El Muque de Opero PARÁMETROS DE CON CONTROL DEL ANTIGUO EN LA EROSIÓN DE LA ARENA. Incluye un mecanismo de alimento de arena que regula la densiDad de arena, un ventilador de la velocidad variable para controlar la velocidad del viento y una etapa de rotación que permita la exposiciónica desde doss La configuración Utiliza Arena de Zona de Desertificación, Caracteria por Granos Más Grandes e Irregulares, lo que conduce una erosión más Agresiva.

El Equipo Probó Cuatro Módulos PV de Silicio Monocristalino; Dos de Ellos Eran Nevos Módulos de 100 W Dinel Solaire, Mientras que OTROS DOS ERAN DE LA VISTE PRE-USADO DE 80 W. BAJO LA CONDICIÓN DE PRUEBA 1, SE disparararon con una densidad de arena de 5,8 g/m3 y UNA Velocidad de 12 m/s; Mientras que en la Condició de Prueba 2, SE Estableció en 10.3 g/m3 y 15 m/s, Respectivamete. Según El Equipo, La Condición 1 RepresentABa un «Entorno acelerador Duro», Mientras que la Condición 2 representante «Un entorno más acelerado y más duro».

La Nueva Ley de Aceleración, Que se denominó la Ley de Elkharraz-Boussaid Después de sus desarrolladores, Considers la Velocidad del viento Unsistema Falla en Condiciones de FuncionAmiento Especias. Junto Con Un Programa de Análisis de Datos Basado en Lógica Difusa, EL MODOLO PODRIA ENCONTRAR EL FACTOR DE ACELERACIA (AF). La fa cuantifica la relaciónica entre la tasa de degradacia en las condiciones de prueba aceleradas y Condiciones del Mundo real.

Los datos recopilados se correlacionaron con los datos de viento del Mundo real de una planta solar en adrar, Argelia. Este conjunto de datos se utilizó para proyectar una Vida útil realista para nos módulos en las condiciones de operación típica del desierto ”, Dijo el profesor Elkharraz.

“Nuestro Modelo, Junto Con Un Programa Lógico Difuso para el Análisis de Datos, Estimó una Vida útil significativo más larga para Loss Módulos de Visel (46.8 Años) en comparación con los Móricos de los Centros de los Centros (31.6 Años). De Adrar, Argelia. Las Tasas de Degradacia Anual Más Bajas (0.64% Frente A 1.38% Para la Visel y el Dinel, Respetivamete) Hijo consistentes con la literatura existente y subrayan el potencia del modelo para predecir con precisión la vida Útil del módulo en las regiones propensas a la lAs Arena «.

Sus Hallazgos Fueron presenteRados en «Una Nueva Ley de Aceleración para la degradacia de la erosión de la arena de Módulos Fotovoltaicos«, Publicado en Energía renovable. Los Científicos de la Universidad Ahmed Draia de Argelia de Adrar, la Universidad Medea y el Centro de Desarrollo de Energía Renovable (CDER) Han Realizado La Investigación.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular