Central Japan Railway Co. y Sekisui Chemical han revelado planes para implementar sistemas fotovoltaicos flexibles basados ​​en perovskita a lo largo de la línea del tren Tokaido Shinkansen en Japón. Están utilizando células solares de perovskita de tipo película delgadas, livianas y flexibles.

Imagen: J.R. Tokai

«como «Las barreras acústicas tienen una larga vida útil, hemos desarrollado un prototipo con células solares de perovskita que se pueden conectar y desconectar fácilmente, asumiendo que sólo las células solares serán reemplazadas durante el mantenimiento», agregó la empresa, señalando que el primer prototipo se construirá. en sus instalaciones de investigación de Komaki, donde se realizarán pruebas iniciales. “Aplicaremos vibraciones y presión del viento simulando el paso de un tren para considerar una estructura que pueda soportar el entorno ferroviario y verificar el impacto en el rendimiento de la generación de energía”.

A finales de diciembre de 2024, Química Sekisui dijo que invertiría 90 mil millones de yenes (570,64 millones de dólares) en una línea de producción solar de perovskita con una capacidad inicial de 100 MW, que comenzará a operar en 2027. También planea comercializar su tecnología de paneles solares de perovskita flexible , producida en sus instalaciones existentes. en 2025.

La inversión incluye la adquisición por 25.000 millones de JPY de una fábrica propiedad de un fabricante japonés de productos electrónicos. Afilado es Sakai, prefectura de Osaka. La adquisición incluye edificios, suministro de energía, refrigeración e instalaciones.

A finales de noviembre, Ministerio de Economía, Comercio e Industria de Japón (METI) dijo que planea implementar alrededor de 20 GW de nuevos sistemas fotovoltaicos basados ​​en Tecnología de células solares de perovskita. párrafo 2040.

El ministerio dijo que también planea apoyar a otros fabricantes japoneses en la producción de tecnologías de módulos solares de perovskita.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

En el segundo semestre de 2925, las tarifas oscilarán entre 3,5037 TWD/kWh y 5,6279 TWD/kWh.

El gobierno dijo que ha mantenido sin cambios la tarifa para los sistemas fotovoltaicos de menos de 10 kW para respaldar el crecimiento entre los propietarios de viviendas y las pequeñas empresas.

El esquema FIT está abierto a todo tipo de proyectos fotovoltaicos, incluidos los sistemas montados en el suelo, y ha impulsado el crecimiento del mercado fotovoltaico sobre tejados de Taiwán en los últimos años.

La capacidad fotovoltaica acumulada de Taiwán alcanzó los 12.418 GW a finales de diciembre de 2023, según MoEA datos. En 2024, Taiwán añadió 2,7 GW de nueva capacidad, tras 2 GW de adiciones anuales tanto en 2023 como en 2022.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

El fabricante coreano dijo que sus nuevos productos ya están disponibles en el mercado norteamericano y son adecuados para viviendas de unidades múltiples, apartamentos, construcciones nuevas y modernizaciones. Los sistemas funcionan con nueva tecnología de inteligencia artificial y, según se informa, funcionan mejor cuando se conectan a un sistema fotovoltaico.

Corea del Sur Samsung ha lanzado nuevas bombas de calor aire-agua residenciales para calefacción y agua caliente sanitaria (ACS) en viviendas de unidades múltiples, apartamentos, construcciones nuevas y remodelaciones.

«Tras la disponibilidad en Europa, Samsung planea apuntar al mercado norteamericano con su bomba de calor aire-agua, que presenta un diseño delgado, AI Home y un rendimiento confiable, allanando el camino para la expansión de estos productos en el mercado global». dijo el fabricante en un comunicado.

Las bombas de calor Slim Fit EHS ClimateHub están disponibles en dos versiones: el sistema ClimateHub Mono y Hydro Unit Mono. El primer modelo utiliza un tanque incorporado y tiene un tamaño de 600 mm x 1.850 mm x 598 mm, mientras que el segundo modelo es un sistema de pared que mide 530 mm x 840 mm y 350 mm y se puede utilizar con un tercer depósito. de ACS de fiesta.

Los sistemas están equipados con filtros magnéticos, válvulas de 3 vías y un vaso de expansión. Se basan en calentadores eléctricos de 2 kW y 4 kW que soportan una sola fase, o un calentador eléctrico de 6 kW que soporta 3 fases. Al agregar un calentador de respaldo de 3 kW que admite monofásicos y trifásicos, los usuarios pueden crear un calentador eléctrico que entregue hasta 9 kW, que según los fabricantes proporciona calefacción confiable en áreas extremadamente frías.

Ambos sistemas se pueden utilizar con la unidad exterior de la empresa. EHS Mono R32 HT Silenciosoque utiliza difluorometano (R32) como refrigerante y, según se informa, puede ofrecer un rendimiento de calefacción del 100 % a temperaturas tan bajas como -25 C, calculando en una temperatura del agua de salida de 55 C. Además, según el fabricante, puede ofrecer hasta un 87 % de rendimiento de calefacción a – 30 C, basado en una temperatura del agua de salida de 55 C.

La unidad exterior tiene una potencia nominal de hasta 14 kW y un coeficiente de rendimiento de 5,0. Se basa en un intercambiador de calor agrandado que, según la compañía, es capaz de transferir más calor en comparación con una unidad exterior convencional. Viene con una tecnología de inteligencia artificial integrada que ajusta la temperatura del agua caliente sanitaria según las necesidades del usuario y al mismo tiempo reduce el consumo de energía.

«La gama completa de funcionalidades está disponible cuando AI Home está conectado al sistema fotovoltaico y otros dispositivos que permiten la gestión de energía optimizando las operaciones de agua caliente y calefacción», dijo la compañía. “Permita a los usuarios controlar intuitivamente la temperatura y la configuración. Además, los usuarios pueden monitorear el estado y el uso de energía de la energía solar fotovoltaica conectada utilizando la descripción general de la zona, así como controlar otros aparatos conectados a SmartThings.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Científicos de los Países Bajos propusieron un nuevo plan de pruebas para reciclar el silicio procedente de paneles fotovoltaicos al final de su vida útil. Su metodología ayudó a crear diferentes categorías de objetos para reciclar silicio para la producción de nuevos lingotes, pero también demostró que la mayor parte del silicio reciclado en un futuro próximo provendrá de productos de tipo p, que difícilmente serán reutilizados en un mercado ahora dominado por módulos de tipo n.

Un grupo de investigación coordinado por el Organización Holandesa para la Investigación Científica Aplicada (TNO) ha investigado cómo las piezas limpias o los fragmentos de piezas recuperadas de módulos fotovoltaicos al final de su vida útil (EoL) podrían reutilizarse para la producción de nuevos lingotes de silicio cristalino y ha descubierto que las piezas dopadas con galio podrían ser particularmente adecuadas para este propósito.

Los científicos explicaron que el silicio de las obleas desechadas debería extraerse eliminando cualquier contaminación en sus superficies, lo que lo volvería a incluir en la categoría de materiales de alta pureza. «Los principales contaminantes son dopantes, oxígeno, carbono y quizás algo de nitrógeno», dijo el autor principal de la investigación. Bart Geerligs, dijo revistapv. «Analizamos esto principalmente desde la perspectiva del control de dopantes y resistividad, y hasta cierto punto también desde la perspectiva de otros contaminantes restantes».

En el estudio”Potencial de las células solares de silicio recicladas como materia prima para el crecimiento de nuevos lingotes.”, publicado en Progresos en energía fotovoltaicalos investigadores explicaron que su análisis abordó posibles limitaciones técnicas y económicas relacionadas, en particular, con dopantes e impurezas. También esperan que se puedan recuperar volúmenes significativos de silicio, especialmente de obleas de tipo P, a partir de 2040 aproximadamente, y que los mercados dopados con boro y galio se dividen más o menos equitativamente.

El grupo de investigación también creó una metodología para separar módulos de tipo ny de tipo p, y paneles de tipo p dopados con boro versus dopados con boro o galio. Se desarrollaron, por ejemplo, que si las células solares del módulo son policristalinas, necesariamente están dopadas con tipo p B. «Hasta donde sabemos, no ha habido producción comercial de módulos de tipo n basados ​​​​en silicio policristalino», dijeron los académicos .

Además, crearon una separación entre las piezas que tienen metalización frontal o no. También dijeron que se debe identificar el voltaje para todos los módulos, excepto aquellos basados ​​en la tecnología de celdas de contacto posterior interdigitado (IBC), y que se debe realizar una inspección visual en la parte posterior de todas las celdas. “El principio para la inspección es entonces que todas las celdas industriales de Al-BSF y PERC de tipo p tienen una metalización lateral trasera de Al combinada con almohadillas de plata locales para soldar las cintas de interconexión, y las celdas industriales de tipo n no. tienen tal combinación”, precisaron.

El equipo explicó que todo el plan de pruebas podría evitarse si una etiqueta en el panel desechado tuviera información útil. «Por ejemplo, se podría documentar que un módulo contiene células HJT (tipo n) o estar basado en células IBC de un fabricante como Sunpower o Maxeon», explicó con más detalle. «También sería muy útil si los módulos PERC mostraran visiblemente una fecha de producción porque antes de 2019, esto implicaría dopaje con boro, y después de 2022, implicaría dopaje de galio en las obleas».

«Este plan daría como resultado tres flujos de materiales», Geerligs dicho. «Estas son células dopadas de tipo n, células dopadas con boro de tipo py un flujo de células PERC monocristalinas que podrían estar dopadas con boro o con galio».

Los científicos concluyeron que reutilizar obleas de tipo p como materia prima para nuevos lingotes de tipo p no será económicamente viable, ya que las células de tipo n son ahora la tecnología dominante.

«La posible reducción de costes derivada del uso de materia prima reciclada no parece ser suficiente para compensar esto», afirmaron. “Otra posibilidad de obtener una rentabilidad mucho mayor para el reciclaje de oblea tipo p puede estar disponible con la tecnología en tándem perovskita-silicio, en cuyo caso la desventaja de eficiencia en comparación con el tipo n se reduce considerablemente y el rendimiento de la celda PERC se puede mejorar mediante un poli – Emisor de Si.”

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Los investigadores del instituto alemán explicaron que la degradación inducida por los rayos UV puede causar pérdidas de eficiencia y voltaje mayores de lo esperado en todas las tecnologías celulares dominantes, incluidos los dispositivos TOPCon. Los científicos esperan que las capas de nitruro de silicio puedan usarse para mejorar la estabilidad UV de TOPCon en comparación con las capas de PECVD que normalmente se utilizan en PERC y células de heterounión.

Investigadores de Alemania Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) han investigado la estabilidad frente a la exposición a los rayos UV de tres tipos de tecnologías convencionales de células solares: contacto pasivado con óxido de túnel (TOPCon), emisor pasivado y célula trasera (PERC) y heterounión (HJT), y han descubierto que todas ellas pueden sufrir una grave degradación de la tensión implícita.

Explicaron que la degradación inducida por los rayos UV (UVID) puede provocar pérdidas inesperadas de voltaje y eficiencia en el futuro, especialmente cuando pueda estar disponible un historial de UVID más amplio. “Un ejemplo destacado de esto es Degradación inducida por luz y temperatura elevada. (LeTID), lo que ha provocado pérdidas imprevistas en los módulos PERC durante la operación de campo”, afirmaron. «Informes recientes sugieren que un escenario similar podría repetirse debido a UVID para las tres arquitecturas celulares modernas».

Los efectos nocivos de la radiación UV se han asociado en gran medida en los paneles solares con encapsulantes de módulos transparentes a los rayos UV y el envejecimiento de los materiales de embalaje de los módulos, lo que conduce a la decoloración, delaminación y agrietamiento de la lámina posterior del encapsulante. En particular, la luz ultravioleta puede contribuir a la formación de ácido acético en el encapsulante del módulo, que corroe la rejilla de contacto de la celda. El rendimiento de las células solares también se ve afectado negativamente por la radiación UV mediante la generación de defectos en la superficie. Dentro de una célula solar de silicio, la luz ultravioleta puede dañar las capas de pasivación, el silicio que se encuentra debajo y la interfaz entre las dos.

«Actualmente, los encapsulantes transparentes a los rayos UV son el estándar para la parte frontal del módulo», dijo el autor principal de la investigación, Fabian Thome. revistapv. “El uso de encapsulantes que bloquean los rayos UV podría ser sin duda una estrategia para reducir la UVID, pero esto tiene el costo de una menor eficiencia del módulo. Sabemos de algunos fabricantes que ya utilizan esta estrategia. Parece ser una buena solución intermedia hasta que la UVID se resuelva a nivel celular”.

En el estudio”Degradación inducida por rayos UV de células solares industriales PERC, TOPCon y HJT: ¿el próximo gran desafío de confiabilidad?”, publicado en RRL Solarlos investigadores explicaron que su análisis demostró células solares tanto comerciales como de laboratorio, sin revelar los nombres de los fabricantes. Los dispositivos fueron expuestos a la radiación de lámparas UV-340 sin cobertura.

«Para establecer una conexión entre las pruebas de laboratorio y la aplicación de campo, analizamos datos resueltos específicamente de un sitio de pruebas en el desierto de Negev, Israel, desde 2019», dijeron. «En la secuencia de prueba UV, tres células por grupo fueron expuestas a la radiación UV desde el frente y dos desde atrás, con los respectivos lados opuestos cubiertos».

Las pruebas demostraron que la exposición trasera generaba menos UVID que la exposición frontal, y todas las tecnologías sufrían pérdidas de voltaje superiores a 5 mV después de 60 kWh·m.2. “Después de la exposición a los rayos UV, la recombinación adicional (una medida para la formación de defectos) fue más pronunciada en PERC que en TOPCon; pero la pérdida de voltaje fue comparable”, dijo Thome. “Esto se debe a que TOPCon tiene una mayor calidad de pasivación y por lo tanto ‘siente’ incluso pequeñas cantidades de defectos. Cuanto mayor sea la eficiencia inicial, mayor será la sensibilidad incluso a pequeñas cantidades de defectos adicionales”.

El análisis también mostró que las capas de pasivación a base de óxido de aluminio (AlOx) y nitruro de silicio (SiNy), que se depositan en células TOPCon mediante deposición de capas atómicas (ALD), pueden mejorar la estabilidad UV de estos dispositivos en comparación con las capas específicamente utilizadas en células PERC y HJT, que se depositan a través de plasma mejorado deposicion quimica de vapor (PECVD).

“Los componentes comunes a las tres tecnologías celulares también pueden ser importantes para la estabilidad UV. «Un ejemplo sería el índice de refracción y el espesor de las capas de nitruro de silicio, que determinan la dosis efectiva de UV que llega al silicio», concluyó Thome.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Panamá será sede de su primer evento de energía solar más almacenamiento, RE+ Centroamérica, los días 4 y 5 de diciembre en el Centro de Convenciones de Panamá en la Ciudad de Panamá.

Imagen: David Barajas, Unsplash

RE+ Eventos, con sede en EE.UU. UU., ha revelado que llevará a cabo un evento de almacenamiento solar en la ciudad de Panamá los días 4 y 5 de diciembre.

«RE+ Events ha estado ampliando su cartera a nivel internacional durante varios años, estableciendo con éxito plataformas para las industrias de energía renovable y tecnología limpia a nivel mundial», dijo el director de asociaciones internacionales de la compañía, Benjamin Low. revistapv. “Esto incluye el crecimiento de nuestra feria insignia, RE+, al igual que ferias internacionales como RE+ México y Electricity Transformation Canada. Dado este impulso, Centroamérica surgió como el siguiente paso natural en nuestra estrategia de expansión y estamos entusiasmados por el entusiasmo que ya está generando”.

RE+ ha dicho que Panamá Es una elección estratégica por varias razones.

“Sirve como un importante centro logístico debido a la Panamá Canal y tiene una ubicación geográfica muy accesible”, dijo Low. “COPA Aerolíneas, PanamáLa aeronave insignia de China ofrece vuelos directos desde y hacia numerosas ciudades, lo que facilita el viaje al evento. Panamá También tiene un sector energético dinámico y en expansión, y se prevé un fuerte crecimiento en el sector de tecnologías limpias a partir de 2025”.

Low dijo que RE+ apunta a “unos pocos cientos” de asistentes y ha asegurado asociaciones con empresas clave y organizaciones regionales, incluida la Cámara Panameña de Energía Solar y el Consejo de Construcción Ecológica de Panamá.

«La marca RE+ abarca más que solo energía solar y almacenamiento», dijo Low. «Si bien estos sectores estarán seguramente bien representados, el evento también presentará soluciones de otros ámbitos, como la movilidad eléctrica».

La exposición contará con expositores y patrocinadores internacionales y regionales, incluidos Amara NZero, AP Systems, La Casa de las Baterías, CELTEK y WTS.

«Ya estamos viendo un gran interés por parte de fabricantes destacados que buscan interactuar con el mercado centroamericano a través de este evento», afirmó Low.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Las solicitudes de participación en el plan se aceptarán a partir del 15 de enero de 2025.

Imagen: GregMontany, Pixabay

Delaware Noticias ESS

El Consejo de Ministros, el poder ejecutivo del gobierno chipriota, ha aprobado el plan de financiación del país para los sistemas de almacenamiento de energía instalados junto con plantas de energía renovable que se habían implementado en el marco de planos de apoyo anteriores, así como para las instalaciones de autoconsumo incluidas en el plan neto. mecanismo de facturación.

El Ministro de Energía, George Papanastasiou, dijo después de la reunión del Gabinete del jueves que la primera fase del plan, valorada en 35 millones de euros (37 millones de dólares), se implementaría inicialmente y seguida por una segunda fase por una suma de 5 millones de euros adicionales.

Para continuar leyendo, visita nuestro Noticias ESS sitio web.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Al regular el crecimiento secundario del yoduro de plomo, un grupo internacional de científicos ha construido una célula solar de perovskita con baja recombinación no radiativa y baja densidad de estado de defecto. Según se informa, el dispositivo mostró una estabilidad superior en las pruebas de estabilidad térmica y de humedad en comparación con las celdas de referencia.

Un equipo de investigación internacional ha fabricado una célula solar de perovskita que, según se informa, muestra una menor recombinación no radiativa y una menor densidad de estado de defecto.

«Nuestro estudio presenta una innovadora estrategia de crecimiento secundario de yoduro de plomo (PbI2) y regulación de la pila π-π que mejora la eficiencia fotovoltaica y la estabilidad de las células solares de perovskita», dijo el autor principal de la investigación, Mojtaba Abdi-Jalebi. revistapv. «Al promover la nucleación y cristalización controlada de PbI2 utilizando 4-fluorobenilamida (FBA), logramos películas de perovskita de alta calidad con granos grandes y estados de defectos minimizados, aumentando la eficiencia celular del 22,06% al 23,62%».

Las interacciones de apilamiento π – π consisten en una interacción no covalente no destructiva utilizada en la química y la biología molecular modernas. Ofrece ventajas como una fuerte fuerza de unión, un proceso de fabricación no destructivo y un funcionamiento sencillo.

«A través del apilamiento π-π y las interacciones de enlaces de hidrógeno entre FBA y la estructura de yoduro de plomo (Pb-I), estabilizamos significativamente el esqueleto de PbI6, abordando la pérdida de yodo, un factor clave en la degradación de las células solares de perovskita», dijo Abdi-Jalebi. «Este enfoque no sólo mejora la resiliencia de la estructura de Pb-I bajo estrés térmico y lumínico, sino que también logra una notable retención del 96% de la eficiencia inicial durante 1.300 horas, avanzando el camino hacia células solares de perovskita estables y comercialmente. viables».

El grupo utilizó una película porosa de PbI2 con baja energía libre de Gibbs y alta cristalinidad para construir un absorbente de perovskita de grano grande y con pocos defectos. el La energía libre de Gibbs es la energía disponible de una sustancia que puede utilizarse en una transformación o reacción química.

Esquema de la celda solar.

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/Unbenannt-1.jpg» data-large-file=»https://www.pv -magazine.com/wp-content/uploads/2024/11/Unbenannt-1.jpg» tabindex=»0″ role=»botón» src=»https://www.pv-magazine.com/wp-content/ uploads/2024/11/Unbenannt-1.jpg» alt width=»498″ height=»280″>

Esquema de la celda solar.

Imagen: University College London Malet Place

La celda se construyó con un sustrato hecho de óxido de indio y estaño (ITO), una capa de transporte de electrones (ETL) hecha de óxido de estaño (SnO2), el absorbente de perovskita, una capa de transporte de huecos (HTL) basado en espiro-OMeTAD, un espaciador basado Éster metílico del ácido fenil-C61-butírico (PCBM) y un contacto metálico de plata (Ag).

Probado en condiciones de iluminación estándar, el dispositivo logró una eficiencia de conversión de energía del 23,62 %, un voltaje de circuito abierto de 1,17 V, una densidad de corriente de cortocircuito de 26,19 mA/cm2 y un factor de llenado del 77,24 %. Una celda de referencia construida sin el tratamiento FBA logró una eficiencia del 22,07 %, un voltaje de circuito abierto de 1,15 V, una densidad de corriente de cortocircuito de 25,19 mA/cm2 y un factor de llenado del 76, 47 %.

La celda también pudo conservar el 77% de su eficiencia después de 1000 h de exposición al aire, en comparación con el 58% del dispositivo de referencia.

«La celda de perovskita objetivo mostró una estabilidad superior tanto en las pruebas de humedad como de estabilidad térmica», explicó el grupo de investigación. «La regulación del crecimiento de la cristalización de PbI2 en el método de deposición secuencial fue crucial para optimizar el crecimiento posterior de los cristales de perovskita».

El nuevo concepto de célula se presentó en el estudio “Crecimiento secundario de yoduro de plomo y regulación de la pila π-π para células solares de perovskita secuenciales con una eficiencia del 23,62%”, publicado en el Revista de ingenieria quimica.

El equipo de investigación estaba compuesto por científicos de China. Universidad del Petróleo del Suroeste, Universidad de Chongqingy el University College London Malet Place en el Reino Unido.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El fabricante chino afirmó que los nuevos módulos Tiger Neo 3.0 están disponibles en dos versiones con potencias de 495 W y 670 W.

Imagen: JinkoSolar

El fabricante chino de módulos solares JinkoSolar ha presentado una nueva serie de módulos solares basada en contacto pasivo con óxido de túnel (TOPCon).

Los módulos Tiger Neo 3.0 presentan una eficiencia de conversión de energía del 24,8% y un factor de biinstalación de más del 85%, según el fabricante.

Los nuevos productos están disponibles en dos versiones con potencias de 495 W y 670 W. El primer panel está destinado a aplicaciones en sistemas residenciales, mientras que el segundo fue concebido para proyectos a escala de servicios públicos.

Los paneles vienen con una garantía de producto de 15 años y una garantía de rendimiento de 30 años. Se informa que la degradación del año inicial es del 1% y se indica una tasa de degradación lineal anual del 0,4%.

«La serie Tiger Neo 3.0 tiene un voltaje de circuito abierto más bajo y una corriente de cortocircuito más alta, lo que contribuye a un BOS más bajo que sus contrapartes», agregó JinkoSolar, sin proporcionar más detalles técnicos.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Los operadores de red holandeses TenneT, Enexis, Liander y Stedin dicen que un mayor uso de “contratos de limitación de capacidad” entre los operadores de energía renovable podría liberar alrededor de 880 MW de capacidad adicional de la red. Los contratos son otorgados por proveedores de servicios de congestión (CSP), que actúan como intermediarios en los Países Bajos.

Imagen: Vysotsky, Wikimedia Commons

Operadores de holandeses rojos Tennet, Enexis, liandery Stedin publicó informes esta semana sobre la capacidad disponible de la red, siguiendo los nuevos requisitos de la Autoridad de Consumidores y Mercados de los Países Bajos (ACM).

«Los resultados de los estudios de congestión realizados por los operadores de redes regionales prácticamente no proporcionan capacidad de red adicional», dijeron las empresas en un comunicado. «En Groningen, Drenthe, Overijssel, Brabante Septentrional y Limburgo no se ha encontrado capacidad adicional».

Sin embargo, los operadores identificaron 880 MW de capacidad adicional en Noordoostpolder, Frisia, Flevopolder, Gelderland, Utrecht y Limburgo, si los clientes de esas regiones aceptan utilizar «contratos de limitación de capacidad(CLC).

Los CLC permiten un uso más eficiente de la red al solicitar a los proyectos solares que reduzcan la inyección de electricidad en las horas punta, con una compensación proporcionada. Los proveedores de servicios de congestión (CSP) actúan como intermediarios para optimizar el espacio de la red.

Las normas actuales permiten a los operadores de la red negociar acuerdos de reducción de picos. Enexis recibió el premio primer contrato de este tipo a un operador de una instalación fotovoltaica en noviembre de 2023.

Los Países Bajos necesitan abordar urgentemente las limitaciones de la red, ya que los altos volúmenes de capacidad solar se implementará en los próximos años.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!