Aunque los defectos locales en la perovskita a base de cloruro y yoduro son difíciles de evitar debido a la migración de iones, un grupo de científicos ha encontrado ahora una manera de pasivarlos. Utilizaron diferentes combinaciones de cloruro de 4-clorobencilamonio y bromuro de 4-clorobencilamonio encima de la capa de transporte de agujeros y alcanzaron una mejora de hasta el 15 % en la eficiencia.

Investigadores de Australia Universidad de Nueva Gales del Sur (UNSW) Sídney han introducido una nueva estrategia de pasivación de defectos para la perovskita a base de cloruro y yoduro. El autor correspondiente Ashraful Hossain Howlader dijo revistapv que el nuevo enfoque mejora la eficiencia de la celda en aproximadamente un 15%, en comparación con una muestra de control, al mismo tiempo que la hace más estable ambientalmente.

«A pesar de las prometedoras propiedades optoelectrónicas, es un hecho que la migración de iones es inevitable en las células solares de perovskita a base de cloruro y yoduro debido a un desajuste de radio entre el cloro y el yodo», explicaron Howlader y su equipo en el artículo. «Pueden producirse defectos locales como vacantes atómicas o acumulación de átomos debido a la migración de iones en una película delgada de perovskita a base de cloruro y yoduro».

La capa de perovskita activa en cuestión está hecha de 60% de formamidiunio (FA) y 40% de metilamonio (MA), con 10% de cloro (Cl) y 90% de yodo (I) utilizados como concentraciones de haluro, para una Fórmula final de FA0.6MA0. .4PbI2.7Cl0.3.

Debajo de la capa activa, hay una capa de transporte de electrones (ETL) de óxido de estaño (SnoO2) depositada sobre óxido de indio y estaño (ITO) que funciona como electrodo frontal. Se deposita una capa de transporte de huecos (HTL) encima del absorbente a base de un material de perovskita conocido como 2,2′,7,7′-Tetrakis-(N,N-di-4-metoxifenilamino)-9,9 ′- espirobifluoreno. Se utilizó Spiro-OMeTAD para la capa de transporte de huecos (HTL) y se depositó plata (Ag) como electrodo posterior.

“De nuestro publicación anteriorencontramos un fenómeno único de autoformación de tes(II) cloruro (SnCl2) entre la interfaz de perovskita cloruro-yoduro y cloruro de estaño (II) (SnO2) ETL”, explicaron los académicos. “Durante el proceso de autoformación, los iones Sn2+ de ETL y los iones Cl- de perovskita migran hacia la interfaz enterrada. Al mismo tiempo, encontramos que los iones migran hacia la interfaz opuesta. A partir de este fenómeno, es obvio que la mayor parte de la película delgada de perovskita de cloruro y yoduro carece de iones Cl- e I-. Por lo tanto, necesitamos pasivar la mayor parte de la película delgada de perovskita de cloruro y yoduro con halógenos. Al mismo tiempo, también necesitamos pasivar la interfaz perovskita/HTL”.

(a) Curvas características de densidad de corriente-voltaje (b) Eficiencia cuántica externa (EQE) de las muestras

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/10/1-s2.0-S0038092X24006637-gr2_lrg-600×222.jpg» datos-large-file= «https://www.pv-magazine.com/wp-content/uploads/2024/10/1-s2.0-S0038092X24006637-gr2_lrg-1200×445.jpg» tabindex=»0″ role=»button» src=» https://www.pv-magazine.com/wp-content/uploads/2024/10/1-s2.0-S0038092X24006637-gr2_lrg-600×222.jpg» alt width=»600″ height=»222″ >

(a) Curvas características de densidad de corriente-voltaje (b) Eficiencia cuántica externa (EQE) de las muestras

Imagen: UNSW Sydney, Energía Solar, CC BY 4.0

Para resolver este problema de creación de defectos, el grupo depositó dos pasivadores conocidos como cloruro de 4-clorobencilamonio (Cl) y bromuro de 4-clorobencilamonio (Br) encima del HTL. Probaron tres combinaciones de los dos: 50% Cl y 50% Br; 75 % Cl y 25 % Br; y 100 % Cl y 0 % Br – en la estructura celular mencionada anteriormente y en comparación con un control sin ningún pasivador.

Se descubrió que el 75 % Cl y el 25 % Br eran los de mejor rendimiento, con una eficiencia de conversión de energía (PCE) del 21 % en la celda campeona, en comparación con el 18,31 % de la celda de control. La celda de 75 % Cl y 25 % Br mostró un voltaje de circuito abierto (Voc) de 1,12 V, una densidad de corriente de cortocircuito (Jsc) de 25,69 mA/cm2 y un factor de llenado (FF) de 72,78 %. La celda controlada funcionó con 1,06 V, 24,37 mA/cm2 y 70,91%, respectivamente.

El PCE de la celda campeona con 50% Cl y 50% Br fue del 19,81%, mientras que fue del 19,23% en el caso de 100% Cl y 0% Br. El primero tenía un Voc de 1,12 V, un Jsc de 24,61 mA/cm2 y un FF de 71,80%, mientras que el segundo tenía 1,07 V, 24,67 mA/cm2 y 72,65%. , respectivamente.

“Cuando comparamos la estabilidad entre dos de nuestras células (control y campeona), las muestras se prueban sin encapsulación. Descubrimos que el PCE de la celda de control puede retener alrededor del 78% y la celda campeona alrededor del 88% de sus eficiencias iniciales después de aproximadamente 672 horas”, añadió el grupo científico. «Esto se debe a los cationes orgánicos voluminosos en la interfaz de perovskita/HTL, que protege la humedad».

Los resultados fueron presentados en “Defectos de pasivación en celda solar de perovskita de yoduro de cloruro con haluros de clorobencilamonio”, publicado en energia solar.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El fabricante chino afirmó que los nuevos módulos Tiger Neo 3.0 están disponibles en dos versiones con potencias de 495 W y 670 W.

Imagen: JinkoSolar

El fabricante chino de módulos solares JinkoSolar ha presentado una nueva serie de módulos solares basada en contacto pasivo con óxido de túnel (TOPCon).

Los módulos Tiger Neo 3.0 presentan una eficiencia de conversión de energía del 24,8% y un factor de biinstalación de más del 85%, según el fabricante.

Los nuevos productos están disponibles en dos versiones con potencias de 495 W y 670 W. El primer panel está destinado a aplicaciones en sistemas residenciales, mientras que el segundo fue concebido para proyectos a escala de servicios públicos.

Los paneles vienen con una garantía de producto de 15 años y una garantía de rendimiento de 30 años. Se informa que la degradación del año inicial es del 1% y se indica una tasa de degradación lineal anual del 0,4%.

«La serie Tiger Neo 3.0 tiene un voltaje de circuito abierto más bajo y una corriente de cortocircuito más alta, lo que contribuye a un BOS más bajo que sus contrapartes», agregó JinkoSolar, sin proporcionar más detalles técnicos.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores polacos han evaluado cómo afecta el rendimiento del vidrio texturizado utilizado como cubierta frontal de paneles fotovoltaicos integrados en edificios. Han descubierto que el rendimiento energético podría ser hasta un 5 % menor en comparación con los módulos basados ​​en vidrio convencional, con parámetros de reflexión de hasta un 88 % en la región visible.

Científicos de la Universidad Católica Juan Pablo II de Lublin, Polonia, han analizado los parámetros ópticos y eléctricos del vidrio texturizado en la construcción de sistemas fotovoltaicos integrados (BIPV) y han descubierto que este tipo de vidrio puede afectar considerablemente a la generación de energía fotovoltaica. y aumentar la reflexión de la luz.

«En el caso de instalaciones en espacios urbanos, un parámetro importante es el bajo valor de reflexión y, en consecuencia, la reducción de los reflejos de la luz que pueden cegar a los conductores», afirmó el autor principal del estudio, Paweł Kwaśnicki. «Dado que BIPV se está volviendo cada vez más popular, amplía el alcance de la instalación en fachadas, paredes de edificios y varios tipos de acristalamiento, sus aspectos estéticos se convierten en uno de los parámetros clave».

Los vidrios texturizados se fabrican calentando láminas de vidrio, ablandándolas y luego pasándolas entre rodillos grabados. Para su investigación, los académicos utilizaron dos láminas de vidrio texturizado disponibles comercialmente. La primera muestra tenía una topografía de superficie con diferencias de altura de 45 μm, mientras que la segunda muestra estaba en el rango de 10 μm. La muestra 1 tenía un patrón regular, con rasgos de 400 μm de diámetro, mientras que en el caso de la muestra 2, el patrón era irregular, con objetos que oscilaban entre 50 μm y más de 1 mm.

En total, se construyeron tres módulos: uno con la muestra 1, el otro con la muestra 2 y el último con vidrio transparente de referencia. En todos los casos se colocó una lámina laminada entre el vidrio y la celda, que encapsulada medía 2,89 W. El factor de llenado de la celda desnuda se midió en 71%, su voltaje de circuito abierto en 0,699 V y su corriente de cortocircuito en 5,83 A.

«Según el cálculo, el valor de absorbancia solar directa para la muestra de referencia fue casi 13 y 5 veces menor que el de las muestras 1 y 2, respectivamente», dijeron los investigadores. “Para ambas muestras texturizadas, la transmitancia fue significativamente menor en la región del infrarrojo cercano (NIR) que en el vidrio de referencia. Además, para la muestra con un patrón de superficie regular (muestra 1), se observará una transmitancia ligeramente menor en la región infrarroja (IR) en comparación con la no regular (muestra 2). Se midió una reflexión significativamente menor en la región de luz visible (VIS): 8,5 veces menor para la muestra 1 y 1,6 veces menor para la muestra 2”.

En cuanto al rendimiento eléctrico, la celda de referencia midió una potencia máxima de 2,86 W; la muestra 1 tenía 2,79 W y la muestra 2 tenía 2,74 W. El factor de llenado, el voltaje de circuito abierto y la corriente de cortocircuito para el módulo de referencia fueron 72,4 %, 0,73 V y 5,425 A, respectivamente. La muestra 1 tenía 72,9 %, 0,727 V ​​y 5,27 A, mientras que la muestra 2 tenía 73,2 %, 0,728 V y 5,143 A.

El análisis mostró que el rendimiento energético en los módulos que utilizan vidrio texturizado podría ser hasta un 5 % menor en comparación con los módulos basados ​​en vidrio convencional, con parámetros de reflexión de hasta un 88 % en la región VIS.

«Dado que la radiación infrarroja tiene varios efectos negativos en las células fotovoltaicas de silicio, incluida una absorción limitada de energía, efectos térmicos que reducen la eficiencia, limitaciones de material y pérdidas ópticas debido a la recombinación de portadores, la aplicación de vidrio texturizado en módulos fotovoltaicos es rentable», concluyó el académico.» Además, la exposición prolongada a la radiación IR puede acelerar la degradación del material, lo que afecta la estabilidad y la vida útil de los módulos fotovoltaicos”.

Sus hallazgos fueron presentados en “Vidrio texturizado en la aplicación de la fotovoltaica arquitectónica”, publicado en Ingeniería y tecnología más limpias. Además de la Universidad Católica Juan Pablo II de Lublin, Kwaśnicki está afiliada al proveedor fotovoltaico polaco Sistema de aprendizaje automático.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Científicos de la India han analizado el rendimiento de un módulo fotovoltaico bifacial instalado sobre una superficie de suelo pintada de blanco y han descubierto que un ángulo de inclinación de 30 grados supera a todos los demás ángulos de inclinación en términos de potencia de salida.

Científicos de la Instituto de Tecnología de Vellore en India han investigado la influencia del ángulo de inclinación en la generación de energía en sistemas fotovoltaicos bifaciales instalados en superficies de suelo pintadas de blanco.

«Demostramos el ángulo de inclinación óptimo para maximizar la producción de energía a partir de módulos fotovoltaicos bifaciales, teniendo en cuenta tanto la irradiancia directa como la reflejada», dijo el autor correspondiente de la investigación, Suprava Chakraborty. revistapv. «Nuestra investigación subraya la importante papel de la reflectancia del suelo, particularmente cuando se utilizan superficies pintadas de blanco, para mejorar el rendimiento de los módulos fotovoltaicos bifaciales».

El análisis se realizó ajustando continuamente el ángulo de inclinación de un panel PERC monocristalino bifacial de 440 W proporcionado por el fabricante indio Loom Solar Pvt. Limitado. Limitado. Ltd. y desplegado en el techo del instituto de investigación de 0 a 90 grados durante los días soleados en febrero de este año, con mediciones tomadas en intervalos de una hora entre las 9:00 am y las 5:00 pm

“Se eligieron ocho ángulos de inclinación distintos, que van desde 0° (horizontal) hasta 90° (vertical)”, explicaron los académicos. «Estas posiciones extremas ofrecen distintas condiciones de exposición a la luz trasera, lo que permite un examen exhaustivo de su influencia en la generación de energía».

Los diferentes ángulos de inclinación fueron 0, 13, 25, 30, 35, 40, 45 y 90 grados. «Las encuestas bibliográficas han demostrado consistentemente que dentro del rango de inclinación de 30 a 60 grados, los módulos fotovoltaicos bifaciales colocados a 30 grados superan consistentemente a los de 60», agregaron.

El grupo utilizó un trazador IV de alta precisión para medir las curvas IV del panel y un sensor de radiación para medir la irradiancia solar incidente tanto en la parte delantera como en la trasera del panel. Se utilizó una cámara termográfica infrarroja para medir la temperatura del panel.

El análisis mostró que la generación de energía promedio diaria máxima se logró cuando el módulo se inclinó a 30 grados, lo que resultó en una potencia de salida de 316,85 W y una relación de irradiación bifacial que oscilaba entre 0,20 y 0, 40. También mostró que la potencia promedio diaria exhibió un aumento progresivo de 0 grados a 30 grados, seguido de una disminución a un mínimo de 148,51 W a 90 grados. «Curiosamente, la relación de irradiación mostró la tendencia opuesta, aumentando de 0,32 a 0,96 a 90 grados», observaron los científicos.

«Estos hallazgos sugieren que, si bien la irradiación general que llega al módulo aumenta con el ángulo de inclinación, la generación de energía óptima se logra con una inclinación de 30 debido al equilibrio entre la irradiancia delantera y trasera», afirmó Chakraborty. «La potencia de salida del módulo fotovoltaico mostró un cambio mínimo para ángulos de inclinación que oscilaban entre 13 grados y 45 grados en esta configuración experimental, teniendo en cuenta una incertidumbre de medición del 5 %».

El equipo de investigación presentó sus hallazgos en el estudio “Optimización del ángulo de inclinación para módulos fotovoltaicos bifaciales: equilibrio de la irradiancia directa y reflejada en superficies de suelo pintadas de blanco”, publicado en Energía Aplicada.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Rayzon Solar tiene actualmente 4 GW de capacidad de fabricación de módulos fotovoltaicos y planea agregar 3 GW para diciembre, seguidos de otros 5 GW para septiembre de 2025. Esto aumentará su capacidad acumulada de módulos a 12 GW por año. La compañía también planea construir una línea celular de 1,2 GW para finales de 2025.

revista pv India

Rayzon Solar, con sede en Gujarat, ha revelado que ampliará su capacidad de fabricación de módulos solares de 4 GW a 12 GW por año para septiembre de 2025.

Vineet Tyagi, jefe de ventas para el norte de la India en Rayzon Solar, dijo revistapv En REI Expo 2024 a principios de octubre, la compañía planea agregar 3 GW para diciembre de 2024 y los 5 GW restantes para septiembre de 2025.

Tyagi añadió que Rayzon Solar pretende construir 1,2 GW de capacidad de producción de células fotovoltaicas para finales de 2025 o principios de 2026.

La compañía firmó un acuerdo con Cliantech Solutions en REI Expo 2024 para una línea de producción solar de 5 GW.

Rayzon Solar también presentó su módulo de contacto pasivado de óxido de túnel (TOPCon) de 635 Wp 210 R, que está diseñado para instalaciones residenciales y comerciales. El módulo cuenta con celdas rectangulares de 210 mm x 182 mm y cuenta con una eficiencia de hasta el 23%. La compañía afirma que el diseño optimiza el espacio dentro del módulo, lo que permite empaquetar más celdas y dar como resultado una mayor densidad de potencia.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!