Los Sospechosos de los Estafadores Están Utilizando Identidades Falsas para Afirmar que Están Interesados ​​en Los Módulos Solares. Los Mayoristas Generalmente Entregando Los Productos Solicitados, Pero los Estafadores Nunca Pagan por sus pedidos. Estos no hijo Casos aislados, ya que ha Surgido un Patrón Claro.

Delaware Revista Fotovoltaica Alemania

La Industria Solar Alemana Enfrenta una Estafa Recurrente en la que los Estafadores, Utilizando IdentiDades Falsas, Ordenan Módulos solares y Luego Desaparecen Sin Pagarlos. La Estafa Afecta Principal de Los Mayoristas. Una víctima ha informado pérdidas de seis cifras para Revista Fotovoltaicay la Policía ha confirmado que hay una investigación en curso.

Los impostores crean sitios convincentes que imitan a Empresas Legítimas, un menudo dirigidas a proyectos de energía comunitaria que Carecen de presencias detalladas en línea. Un Número de Teléfono listado se conecta a una secretaria aparente profesional, mejorando su credibilidad.

Los pedidos se realizan en cuentas con términos de Pago Estándar. LOS CHECKS DE SEGURO DE CRÉDITO Comercial interno Validan La Solvencia de los Nueva CLIENDES, Ya que los Nombres de las Empresas Proporcionados existen en el Registro Comercial, lo que Lleva a la Aprobación de la Entrega.

POCO DESPUÉS, LAS COMPREADÍAS NAVIERAS RECOLECTAN LOS PRODUCTOS, PERO LOS PAGOS NUNCA SE Reciben, Y Tanto El Cliente como los productos Ordenados Desaparecen. Las entidas de Seguro de Crédito General Comercial Identifican Las Transacciones Fraudulentas, Pero General no Cubren Tales Casos, Según Las Partes Afectadas.

Un Menudo, Los Bienes Robados se revenden. Las Compañías Navieras Luego Entregan Estos Paneles Directamento A compradoros desprecienidos que Creen que Han Asegunrado Gangas. Según La Ley Alemana, La Compra de Bienes Robados de Buena Fe No Conduce A Cargos Penales, Pero los Compradores No Pueden Reclamar La Propertado Legítima.

Si los Mayoristas localizan sus módulos Fotovoltaicos, Pueden Exigir Su RemeReso. Por lo tanto, Los compradores potenciales de Deben Verificar Las Identidas y la Confiabilidad de los Vendores, especial Módulos de Comerciales de Plataformas.

Los Mayoristas Afectados Han Identificado 11 cuentos Identidas Fraudulentas. Un pesar de la alcalde precaución, prevenir incidentes repetidos ha sido un desafío, lo que resultado -en el robo de tres camiones de módulos fotovoltaicos.

LOS MAYORISTAS REQUIEREN PAGOS ADICIDOS PORIDOS INICIOS DE CLIENDES DE Nuevos, lo que problemas problemáticos es un mercado competitivo. Sin embargo, inclusión este ha sido ineficaz, ya que los estafadores Han Estado Pagando por Las órdenes Iniciales para generar fideicomiso, y luego abogado nuevos términos de pago para pedidos Posteriores, ques explotan para cométer craude.

Para detener cuentos crímenes, Los mayores ahora Deben Emplear Medidas más estrictas, incluido el Uso de Servicios de Archivo de Internet para Verifar Las Historias de Los Sitios Web de los Nueva ESTO AYUDA UN Determinar Si El Sitio Web de Una Empresa se Creó Poco antes del Contacto Inicial, que es una posible Bandera Roja.

Los Mayoristas También Deben Consultar Los Datos de Contacto de Los Nueva clientes. Los Cambios FRECUENTES O Las Entradas Recientes Podría Indicar intenciones fraudulentas. Además, Los Mayoristas Han Comenzado, un visitar, científicos de Nueva

La Inspectora Jefe Hella Christoph de la Policía en Bielefeld, Alemania, HA Dicho Revista Fotovoltaica que las Estafas no es hijo incidenta aislados y han afectado un numerosos mayoristas en todo el país.

Nuestro Principal Informante Ahora Está en Redes Conotros Mayoristas Afectadas y Está Invitando A Las Empresas Afectadas A Ponerse en ContactO. Este se puede hacer a Través de la Dirección de Correo Electónico betrugsfall2025@gmail.com, Que no es administrada por El Revista Fotovoltaica Equipo editorial.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular

Las Principales Energías de la India Dice Que Ha suspendido sus planos de construir una fábrica en los estados Unidos, ya que espera que «el régimen en los estados unidos se estableció el establecimiento y Tenga Claro lo Que quieren Hacer».

Imagen: Heliene

Delaware PV Magazine USA

Premier Energies, Un Fabricante Solar En India, Dijo Que Detendrá Los Planes para Abrir Una Instalación de Fabricación de Células Solares de 1 Gw en Los Estados Unidos.

La Fabricación de Células Solares Sigue Sido Crítica, Pierna subjuiciosa de la cadena de suministro solar y Requiere Más Capital Que El Ensamblaje del Módulo, Donde Estados Unidos Tiene una Capacidad Significativa.

La pausa se produce cuando la orden eJecutiva de la administración de la Trump de detener el gasto federal en clima y energía ha causado confusión generalizada e incertidumbre en la industria. No Está Claro Cuál es el Plan de la Administración para el desembolso de los Créditos Fiscales de la Ley de Reducción de Inflacia de Los Estados Unidos. Desde su paso en 2022, un Cantidad de Inversión Sin precedentes en la Fabricación de Energía Limpia de Ee. Uu. Ha Sido ANUBIODO.

Premier energías dijo que todavía tiene planos, pero ahora están enespera Hasta que claridad REGRESA AL Mercado.

“Estamos esperando que el régimen en los ee. Uu. SE ASIENTE Y SEA CLARO SOBRE LO QUIEREN HACER. Partir de Ahora, solo Hemos Escuchado y Leído que el Ira Ha Sido Detenido ”, Dijo Chiranjeev Saluja, director Gerente de Premier Energies.

Los planos de fábrica se anunciaron en julio de 2024. La Fabricante del Módulo Heliene Playó Comenzar Un Empresa conjunta Con Las Principales Energías a la Fuente 1 GW de Células de Tipo n Para sus operaciones de EnsamblAaje de Módulos en Los Estados Unidos.

Helieneno Realmento obtiene células solares de la instalacia de Hyderabad de premier para las operaciones de fabrición de Módulos en montaña Iron, Minnesota.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular

Idemitsu Kosan Dice que Planea Comenzar A Construir una Instalación de Agrivoltaica de 2 mw en Japón A Finales de Este Año, Luego de la conclusión exitosa de un Proyecto piloto de 45 kw. La compañía ha desarrollado un sistema agiográfico propietario basado en la tecnología de rastreadores.

Imagen: idemitsu kosan

Idemitsu kosan Dijo en un comunicado de prensa esta semana que planea comenzar en un proyecto de Agrivoltaica de 2 mw a finales de este y en japón.

El Refinador de Petróloo Japonés Dijo que la Instalación Planificada en Kisarazu, Prefectura de Chiba, Es parte de Susfuerzos Continuos para integrar la Energía renovable con las Instalaciones Agrícolas. Sigue la conclusión exitosa de la compañía de un proyecto piloto más pequeño de 45 kw que se lanzó en 2023.

El Nuevo Proyecto de 2 MW Contará Con Módulos Fotovoltaicos Bifaciales y Tecnología de SeguiMiento para Maximizar la Producción de Energía. La Compañía Diseñaá El Sistema para minimizar Su Impacto en Las Actividades Agrícolas priorizando la Luz Solar para Los Cultivos Durante SUS Períodos de Crecimiento, Al Tiempo Que Optimiza la Generación de Energía Durante la Temporada BajAJa Bajún.

Idemitsu Kosan, Con Sede en Tokio, Dijo que su solución aborda un desafío Clave en la estrategia Energética de japón: la escasez de tierras para proyectos grandes. Al Usar Tierras de Cultivo, la compañena Tiene como objetivo ofRecer fljos de ingresos adicionales paras agrícolas al tiempo que contribuye al objetivo del goBierno de auminar la participante de la energía renovable en la combina de deergía natalal.

Idemitsu Kosan: Que Reciente Adquirió una participación en la Compañía de Grafito Australiana Graphinex para expandir su Fabricación del Ánodo de Batería Negocios: Dijo que su proyecto de Agritutaicos Planificado en Chiba Está Alineado con los Esfuerzos MÁs Amplios de Japón para expandir la Energía solar y Lograr la Neutralidad de Carbono para 2050.

Esta Semana, La New Energy Foundation (NEF), ONA Organización Sin Fines de Lucro Con Sede en Tokio, Reconcido Formalmento, El Sistema Agrivoltaico de la Próxima Generación de Idemitsu Kosan para su enfoque innovador para paraquilibbars los productores.

El Instituto de Políticas de Energía Sostenible (ISEP) y El Contratista Ryoeng Construyeron El Primero de Japón Proyecto de Agrivoltaicos verticales EN NIHONMATSU, LA Prefectura de Fukushima, Con el apoyo de las Compañías Almasas Luxor Solar y Next2sun en Abril de 2022.

En agosto de 2024, japón suspendió aranceles y primas de alimentació para 342 Proyectos Agrivoltaicos por violar Las Nueva Regulaciones de Tierras Agrícolas. La suspensión Siguió Pautas Más Estrictas Introducidas en Abril de 2024, cuyo objetivo es evitando el uso inadecuado de tierras agrícolas para instalaciones solares.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular

Los Investigadores de la Universidad de Nueva Gales del Sur (Unsw) Han establecido un Nuevo Récord de Eficiencia Energética para Las Células Solares de Kesterita, Una Tecnología Con potencia para mejorar los sistemas fotovoltaicos en silicio.

Delaware PV Magazine Australia

Unsw Los investigadores de Los Han Alcanzado una Eficiencia de Conversión de Energía Récord Mundial de 13.2% para Las Células Solares de Kesterito de Alta Banda (czts) con una célula a escala de laboratorio que se habían y mejorado con hidrógeno.

CZTS, UN COMPUESTO DE COBRE, ZINC, ESTAIRO Y AZUFRE, ES UNA PELÍCULA E, Cososo Efectivo Para Fabricar, y Se Sabe que Mantiena Su Rendimiento Durante Un Largo Período.

Embargo del pecado, Su Eficiencia de Conversión de Energía se ha Visto obstaculizada por una eficiencia de conversión de energía relativamete Baja, en gran medida atribuida a defectos creados dentro de czts durante la produccionon.

El Profesor Xiaojing Hao y Su Equipo de la Escuela de Ingeniería Fotovoltaica y Renovable de la Unsw Dicen Que Han Ayudado Una mediana del problema de resolución de el problema el recocido o el tratamiento térmico, el apositivo czts cellino solar cell en una atmósfera contiene halhen halhen halhen halhen halhen halhen hhenron haltro.

«En Términos Básicos, Para Cear czts, Tomas Cobre, Estare, Zinc y Azufre y Los ‘Cocina’ a un cierta temperatura que lo convierte en un material material de USAR COMO SEMICONTUCTOR», Dijo Hao. “La parte difí controlar los defectos que se introduce durante e proceso. Lo que hemos mostrado en este trabajo es que la la introducción de hidrógeno puede garantizar que esos defectos tengan menos impacto, que se conoce como pasivación. Debido un que el hidrógeno está modulando los defectos dentro de czts, Eso es lo que ayuda un adivino su eficiencia en términos de convertir la luz solar en electricidad «.

El Equipo de Unsw Logró un 11% Eficiencia Celular CZTS EN 2018 Pero el Progreso se estancó desespués de Eso.

Hao Dijo que tie la Esperanza de Que el Nueva Avance Acelere las Posibilidades de Que los Czt Alcanzan la Eficiencia del 15% Dentro del Promo Año yespera Su Comercialización para 2030.

«TODAVÍA HABAJO POR HACER PARA ENCONTRAR FORMAS DE REDUCIR AÚN MÁS LOS DEFCTOS QUE ENCONTRAMOS EN CZTS, TU SEA DURANTE LA FABRICACIÓN O MEDIANTE TRATAMIENTOS POSTERIORES A LA Fabricación», DiJo. “Pero sabemos que se trata de materiales. Cuando consideramos los requisitos de Abajo hacia arriba, sabemos que necesitamos algo ampliamador abundante, que marino ecológico, que tenga Buenas propiedades optoelectrónnicas y pueda durar durar dura tiempo, y czts se Ajusta a la factura «.

El Equipo de Unsw, incluidos Kaiwen Sun y Jialiang Huang, También es Investigando perovskite – Que Ha Alcanzado Niveles de Eficiencia de Conversión de Energía de Cerca del 27%, Pero también se degrada rápidamento, como material de color potencia de Podría Asociarse con silicio en las células fotovoltaicas en tándem.

«El Panorama General Aquí es que Finalmento Queremos que la Electricidad mar MÁS BARATA Y Verde para Generar», Dijo Hao. «Los Módulos de Silicio Casi Han Alcanzado El LÍMITE DE SUCIENCIA TEÓRRICA, por lo que lo que Estamos Tratando de Hacer es respondedor a la pregunta Proveniente de la Industria del Pv Sobre la Próax Generación de Cénulas».

La Investigación Fundamental Derrás de Las Eficiencias Récords Ha Sido publicado en el Energía de la Naturaleza Diario.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular

Solis Ha Introucido Sus Inversores Híbridos de la Serie Solarator en India, Dirigida A Los Mercados de Almacenamiento Solar Residencial Y Comercial.

Delaware Revista Fotovoltaica India

Solis Ha Lanzado Su Serie de Inversores Híbridos Solarator Para aplicaciones Residenciales y Comerciales en India. La Línea de Productos incluyendo Inversiones Compatibles Con generadores, Cada Uno adaptado para requisitos de energía especificios.

LOS Inversores de Almacenamiento de Energía S6-EO1P (4-5) de Solis (4-5) K-48, Con 4 KW y 5 KW, Están Diseñados para áreas Fuera de La Red y Regiones Con Cortes de Energía Frecuentes. LOS Inversores Compactos admiten configuraciones monofásicas o trifásicas, de recrean carga rápida, compatibilidad del generador y monitoreo avanzado de fallas.

LOS Inversores S6-EH1P (3-8) KL-plus, Con Salidas de 3 KW, 5 KW, 6 KW y 8 KW, Están Diseñados para Sistemas Residenciales de Almacenamiento de Energía Fotovoltaica y de Energía. Soporte de Paneles Fotovoltaicos de Alta Potencia Con Hasta 32 UNA Corriente de Entrada MáMaMa de SeguiMiento de Puntos de Potencia (MPPT), Ofrecen Carga/Descarga Cronometrada de Seis Etapas, Conmutación ups y Administración de la Baterí. MÚLTIPLES UNIDADES PUEDEN CONECTARSO EN Paralelo para Sistemas Monofásicos o Trifásicos de Hasta 48 KW.

LOS Inversores S6-EH3P (8-15) K02-NV-YD-L, Disponibles Con Salidas de 8 KW, 10 KW, 12 KW y 15 KW, Están Diseñados para Grandes Sistemas PV Residenciales que utilizan Baterías de Bajo Voltaje de 48 V .

LOS Inversores S6-EH3P (30-50) KH, Con Salidas de 29.9 kW, 30 kW, 40 kW y 50 kW, Sirven Aplicaciones Comerciales que REQUEREN ALTO VOLTAJE. CUENTAN CON PUERTOS DE BATERIA Duales, Cuatro Entradas MPPT Integradas y Control de Pico de Afeitado. Hasta Seis Unidades Pueden Funcionar en Paralelo para una alcalde Escalabilidad y Confiabilidad.

Este contenido está protegido por Los Derechos de Autor y No Puede Reutilizarse. Si Desea Cooperar Con Nosotros y Desea Reutilizar Parte de Nuestro Contenido, Comuníquese Con: editors@pv-magazine.com.

Contenido popular

El techo de Estonia. Solar ha desarrollado nuevos paneles fotovoltaicos integrados en edificios (BIPV) con un ancho efectivo de 470 mm, ofreciendo salidas de potencia de 120 W o 180 W.

El Velario Slim

«data-medium-file =» https://www.pv-magazine.com/wp-content/uploads/2025/01/un-ejemplo-de-un-proyecto-solar-de-roofit-que-tuvo-lugar- En -Dinamarca-2022.jpg-600×304.jpg «Data-Large-File =» https://www.pv-magazine.com/wp-content/uploads/2025/01/un-ejemplo-de-techo.Proyecto-solar-que-tuvo-lugar-en-dinamarca-2022.jpg- 1200×609.jpg «tabindex=» 0 «rol=» botón «>

El Velario Slim

Imagen: Rouchit.solar

Especialista en bipv techo ha introducido una nueva serie de módulos solares de contacto con óxido de túnel (TOPCON) para aplicaciones residenciales. La línea de productos Velario Slim viene en dos versiones con salidas de 120 W y 180 W.

“La estrecha cobertura de techo efectiva de 470 mm de los paneles delgados de Velario se compara con el tamaño de 550 mm de Velario, pero mantiene las características distintivas del producto original, un diseño discreto y escandinavo que tiene como objetivo adaptarse a cualquier propiedad sin comprometer su atractivo estético, niveles excepcionales. de resistencia a las duras condiciones climáticas y un proceso de instalación fácil de 2 en 1”, dijo la compañía en un comunicado.

Los paneles cuentan con celdas TopCon dispuestas en un diseño de 2 × 12 para el modelo de 120 W y un diseño de 2 × 18 para el modelo de 180 W. Ambas versiones incluyen vidrio frontal de hierro bajo templado de 3,2 mm y acero Galvanizado de 0,5 mm con una hoja de espalda recubierta negra. El panel de 120 W ofrece una eficiencia del 18,6%, mientras que el modelo de 180 W logra el 19,3%.

«Nuestros otros productos ya tienen un alto rendimiento cuando se trata de eficiencia energética, pero el Velario Slim permitirá que se cubra aún más espacio en el techo y se genere más energía libre», dijo el CEO Andrés Anijalg. «Esto será especialmente significativo para los techos pequeños o irregulares que a menudo tienen el mayor riesgo de quedarse con áreas descubiertas debido a que estos espacios sobrantes son demasiado pequeños para adaptarse a los paneles más grandes».

Este contenido está protegido por los derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores irlandeses han propuesto, por primera vez, un enfoque determinista para diseñar la relación de carga del inversor (ILR) en proyectos fotovoltaicos a escala de servicios públicos. Se afirma que la novedosa metodología simplifica el proceso de diseño y reduce la variabilidad del rendimiento, al tiempo que mejora la certeza de la inversión.

Un equipo de científicos de la University College Cork de Irlanda ha propuesto un nuevo enfoque para diseñar la relación de carga del inversor (ILR) para plantas de energía fotovoltaica a gran escala.

Los investigadores describieron el ILR como la relación entre la potencia de salida del conjunto fotovoltaico de CC en relación con la potencia nominal de CA de la unidad de conversión de energía (PCU). «Si el valor ILR es bajo, puede resultar en una menor viabilidad económica del sistema», explican. «Por otro lado, aumentar el valor del ILR puede causar problemas con la operación de despacho y pérdidas por recorte».

En el estudio”Un método refinado para optimizar la relación de carga del inversor en una planta de energía fotovoltaica a gran escala.”, publicado en Informes energéticosel grupo de investigación dijo que identificar el diseño ILR óptimo para energía solar a gran escala es «un esfuerzo continuo» tanto a nivel industrial como de investigación, y enfatizó que, hasta la fecha, no se ha desarrollado ningún enfoque ILR determinista, que podría ayudar a los desarrolladores de proyectos fotovoltaicos en Identificar el mejor valor de la PCU CC/CA en condiciones geográficas, climáticas y económicas específicas.

“A diferencia de los métodos metaheurísticos o heurísticos, este enfoque simplifica el proceso de diseño y reduce la variabilidad del rendimiento”, enfatizaron los académicos, señalando que la metodología propuesta, en lugar de centrarse en el sobredimensionamiento, optimiza la potencia nominal del inversor instalado. para una instalación fotovoltaica determinada. «Al mejorar la certeza de la inversión, proporciona una estimación confiable para maximizar los retornos económicos con un riesgo mínimo».

El nuevo enfoque se implementa en dos pasos. En primer lugar, se supone que no es necesario que el inversor conecte el sistema fotovoltaico a la red. En segundo lugar, también se supone que la red funciona con CA, lo que requiere un inversor. «Luego, se determina la capacidad óptima del inversor para optimizar los ingresos, teniendo en cuenta el costo de inversión adicional para la PCU CC/CA», explicaron además los académicos, señalando que el algoritmo del sistema tiene en cuenta las especificaciones de la PCU CC/CA. la tarifa de alimentación y la generación fotovoltaica CC estimada.

El grupo probó este novedoso enfoque en una planta de energía fotovoltaica de 5 MW ubicada en Kelmoney, Irlanda, con el objetivo de maximizar su rentabilidad anual. La instalación utiliza 16.380 módulos solares proporcionados por el fabricante chino. Largocon 26 módulos en paralelo y 630 cadenas. También utiliza 29 cadenas de inversores suministradas por China. Huawei. Los datos de temperatura y radiación se recopilarán a partir de una simulación del sitio utilizando el software PVsyst.

Los investigadores afirman que este análisis les permitió encontrar el valor ILR óptimo para la planta en 1,4528, que destacaron es inferior al 1,4656 diseñado por PVsys. «El análisis muestra que la limitación de energía se produce a 5,22 MW, que es la potencia nominal óptima del inversor», dijeron. «Sólo se recorta la generación superior a 5,22 MW, y la energía por debajo de este umbral se utiliza para calcular las anualidades estimadas de los ingresos del sistema».

La saturación del inversor se produce cuando la energía CC de un sistema fotovoltaico es mayor que el tamaño de entrada máximo del inversor. Esto satura el inversor y el exceso de energía CC no se convierte en CA.

Los científicos enfatizaron que el valor más bajo del ILR corresponde a un aumento en las anualidades de ganancias anuales.

También afirmaron que la metodología también podría usarse para sistemas fotovoltaicos en tejados o para evaluar la viabilidad económica del sitio para plantas de energía fotovoltaica existentes. «Posteriormente puede proporcionar recomendaciones para actualizar los componentes de PVPP para lograr una mayor rentabilidad», concluyeron. «Este enfoque es particularmente beneficioso para abordar los posibles aumentos en el envejecimiento de los inversores o módulos fotovoltaicos».

En marzo, un equipo de investigación internacional publicó una investigación que investiga el efecto de recorte del inversor sobre la mitigación de las pérdidas por suciedad en los sistemas fotovoltaicos y explicó que esta estrategia puede no ser tan efectiva como se piensa.

Más tarde, en julio, investigadores de Malasia propusieron un nuevo enfoque para identificar la relación óptima de tamaño de energía para equilibrar la captura de energía fotovoltaica con los costos del inversor. Se dice que el modelo calibrado refleja con precisión la relación entre la eficiencia del inversor y el comportamiento del sistema en el mundo real.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Concebido por un equipo de investigación internacional, el modelo también se puede utilizar para proyectos híbridos eólico-solar. Según sus creadores, soluciones proporcionan prácticas para la optimización del uso del suelo y la planificación de energías renovables.

Un grupo de investigadores dirigido por Arabia Saudita Universidad Rey Fahd de Petróleo y Minerales (KFUPM) ha desarrollado un novedoso modelo de toma de decisiones espacio-temporal para el desarrollo de plantas híbridas de energía eólica fotovoltaica, así como proyectos individuales de energía eólica y fotovoltaica, en Arabia Saudita.

«Nuestro nuevo modelo puede identificar las ubicaciones óptimas para la energía solar fotovoltaica a gran escala, parques eólicos terrestres y sistemas híbridos en Arabia Saudita», dijo el autor principal de la investigación, Mohamed R. Elkadeem, dijo revistapv. “A diferencia de los enfoques tradicionales que se basan en datos promediados a largo plazo o fuentes de energía únicas, introdujimos un novedoso modelo de toma de decisiones espacio-temporal (STDMM) que aprovecha el conjunto de datos de reanálisis horario ERA5 junto con modelos espaciales de alta precisión de más de veinte restricciones y evaluaciones. criterios. El modelo proporciona una solución práctica para la optimización del uso de la tierra y la planificación de energías renovables (RE)”.

¿Está interesado en obtener más información sobre Arabia Saudita?

¡Únase a nuestro evento presencial en Riad! La segunda edición de la Conferencia sobre Energía Limpia SunRise Arabia se llevará a cabo el 19 de febrero de 2025. Reserva tu entrada ahora.

ERA5 es un conjunto de datos de reanálisis que proporciona estimaciones horarias de una gran cantidad de variables climáticas atmosféricas, terrestres y oceánicas. Puede calcular el factor de capacidad (CF), la generación potencial técnica anual (ATPG) y el costo nivelado de la electricidad (LCOE) de un proyecto, al tiempo que estima los costos de la infraestructura eléctrica.

Para identificar los mejores sitios para el despliegue eólico y solar, el método utiliza 1 km2 Análisis a nivel de cuadrícula basado en un modelo híbrido SIG-Bayesiano Best Worst Method (BWM) de múltiples capas, que es un método de toma de decisiones multicriterio para encontrar los pesos óptimos de un conjunto de criterios calculando en las preferencias de una sola decisión . -fabricante (DM). Se utiliza un modelo de complementariedad energética para analizar plantas híbridas eólicas y solares.

«La combinación de GIS y modelado bayesiano BWM garantiza que la selección del sitio sea integral y equilibrada, incorporando criterios impulsados ​​por expertos para optimizar la toma de decisiones del proceso de selección del sitio», dijeron los científicos, señalando que ERA5 tiende a funcionará mejor para las evaluaciones de recursos solares. en comparación con los recursos eólicos.

A través del nuevo modelo, los investigadores encontraron que alrededor del 32% del país es apto para el desarrollo de energía solar y el 36% para la eólica.

«El estudio propone que aproximadamente el 4,81 % del terreno se asigna a proyectos solares y el 4,74 % a proyectos eólicos para satisfacer el 50 % de las necesidades energéticas de Arabia Saudita en 2030, lo que se traducirá en el desarrollo de 95,12 GW de energía solar fotovoltaica y 74,45 GW de turbinas eólicas». afirmó el equipo. «El análisis tecnoeconómico revela que los recursos solares son relativamente homogéneos en todo el país, mientras que los recursos eólicos muestran una mayor variabilidad espacial, lo que afecta los costos y la eficiencia del proyecto».

Su análisis también mostró que el El LCOE de la energía solar oscila entre 43 $/MWh y 78,6 $/MWh, alcanzando el valor medio los 52,6 $/MWh. En cuanto a la energía eólica, se encontró que el LCOE tenía un rango más amplio de 34,8 $/MWh a 125 $/MWh.

La novedosa metodología fue introducida en el estudio “Un modelo espacio-temporal de toma de decisiones para sistemas solares, eólicos e híbridos: un estudio de caso de Arabia Saudita”, publicado en Energía Aplicada. El equipo de investigación incluyó académicos de la Universidad Kafrelsheikh de Egipto y la Universidad de Ciencia y Tecnología de Wrocław en Polonia.

Según el equipo de investigación, el método propuesto podría abrir nuevos mercados para herramientas de planificación y optimización de energías renovables, al servicio de desarrolladores, gobiernos y empresas de servicios públicos en Arabia Saudita. “El modelo no solo reduce los costos, sino que también acelera la instalación eficiente de sistemas de energía renovable a escala de servicios públicos, contribuyendo a los objetivos de Arabia Saudita de lograr una participación del 50% de las energías renovables en la generación de electricidad. para 2030 y un 50% de generación de energía a partir de gas natural y alcanzar Net-Zero. Emisiones para 2060”, Elkadem dicho.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Huasun lanzó sus paneles solares bifaciales de vidrio dual Kunlun G12 de 720 W para proyectos fotovoltaicos verticales en la Cumbre Económica Mundial del Futuro en Abu Dhabi. Los paneles presentan una eficiencia de conversión de energía del 23,2 % y una resistencia mejorada a la tensión mecánica con un marco de aleación de acero.

Fabricante chino de módulos solares de heterounión (HJT) Huasun ha lanzado una nueva serie de paneles bifaciales de doble vidrio para proyectos fotovoltaicos verticales en la Cumbre Económica Mundial del Futuro (WFES) en Abu Dhabi, Emiratos Árabes Unidos.

«Los módulos están fabricados con un marco especial de acero aleado, que garantiza una mayor resistencia al estrés mecánico», dijo un portavoz de la empresa. revistapv. «El despliegue vertical también evita la capa de nieve y la estratificación del polvo, lo que reduce los costes de mantenimiento».

La compañía afirma que el despliegue vertical permite que los módulos alcancen un factor de bifacialidad cercano al 100%.

«Gracias a su estructura bifacial simétrica natural, los paneles ofrecen más rendimiento energético desde la parte trasera en comparación con los fotovoltaicos convencionales montados en el suelo», dijo.

Los módulos, con 132 células monocristalinas HJT semicortadas, miden 2.384 mm x 1.303 mm x 33 mm y pesan 39,9 kg. Disponibles en cinco variantes con potencias de 700 W a 720 W, tienen eficiencias que oscilan entre el 22,5% y el 23,2%. El voltaje del circuito abierto varía de 49,77 V a 50,17 V y la corriente de cortocircuito varía de 17,81 A a 18,17 A.

Los paneles admiten un voltaje máximo del sistema de 1500 V, cuentan con una carcasa IP68 y tienen un coeficiente de temperatura de -0,24% por grado Celsius, con temperaturas operativas entre -40 C y 85 C. Ambos lados de los módulos bifaciales Están cubiertos por 2,0 mm de vidrio.

Los productos vienen con una garantía de salida de potencia lineal de 30 años y una garantía de producto de 15 años. La empresa garantiza una degradación del 1,0% durante el primer año y no menos del 90,3% de la producción nominal al cabo de 30 años.

Los nuevos módulos también cuentan con la tecnología de barra colectora cero (0BB) de la compañía, que mejora la adherencia, la resistencia a los puntos calientes y elimina la película portadora.

«Nuestro nuevo producto es adecuado para granjas, pastizales y energía fotovoltaica a gran escala», afirmó el portavoz.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Un grupo de investigación chino ha creado una nueva tecnología de refrigeración radiativa para dispositivos fotovoltaicos. Consiste en una cámara hecha de etileno-tetrafluoroetileno y polidimetilsiloxano que, cuando se coloca encima de las células solares, puede alcanzar una potencia de enfriamiento promedio de aproximadamente 40 W/m2.

Investigadores de China han desarrollado un nuevo enfriamiento radiativo Tecnología para dispositivos fotovoltaicos que, según se informa, puede alcanzar una densidad de potencia de refrigeración de hasta 40 W/m.2 y una densidad de potencia fotovoltaica de hasta 103,33 W/m2.

El enfriamiento radiativo ocurre cuando la superficie de un objeto absorbe menos radiación de la atmósfera y emite más. Como resultado, la superficie pierde calor y se puede lograr un efecto de enfriamiento sin necesidad de energía.

Los científicos explicaron que su sistema de enfriamiento de radiación diurna de tipo transmisión consta de una cámara hecha de etileno-tetrafluoroetileno (ETFE) y polidimetilsiloxano (PDMS) que se coloca encima de la célula solar. Estos materiales tienen una alta transmitancia solar y emisividad en el infrarrojo medio.

«Las células solares demuestran una importante absortividad en el infrarrojo medio a lo largo de la banda de luz solar», explicó el equipo. “Los materiales tradicionales de enfriamiento radiativo diurno exhiben una alta reflectividad dentro de la banda de luz solar (0,28 a 2,5 mm) y una alta emisividad en el infrarrojo medio en la ventana atmosférica de 8 a 13 mm. La compatibilidad del enfriamiento radiativo diurno con células solares para una conversión eficiente de energía ha planteado desafíos debido a la necesidad de reflejar la luz solar”.

Para superar estos desafíos, el equipo comenzó analizando grupos funcionales, lo que resultó en encontrar ETFE y PDMS como las mejores opciones. A continuación, se probaron varios espesores de películas de ETFE y películas de PDMS. Finalmente, el equipo decidió utilizar ETFE con un espesor de 150 mm como material de la capa superior de la cámara y PDMS con un espesor de 5 mm como material de la capa inferior de la cámara.

«Se utilizó una máquina de grabado láser para tallar dos paneles acrílicos, cada uno de los cuales medía 20 cm de largo y 12 cm de ancho, en un rectángulo vacío con dimensiones de 17 cm de largo y 10 cm de ancho en el centro» , dijeron los académicos. «Las películas de ETFE y PDMS se sujetaron entre los paneles acrílicos y se aseguraron con tornillos, creando una cámara de 5 mm de espesor entre las dos películas».

La cámara se colocó sobre una célula solar de silicio monocristalino con una eficiencia del 13%. Para optimizar la eficiencia del enfriamiento radiativo, una bomba de aire introduce aire a través de la entrada de la cámara y lo expulsa por el lado opuesto a un caudal de 20 L/min. Este sistema experimental se probó al aire libre en un día soleado de octubre en Nanjing, al este de China.

«El dispositivo demuestra una excelente estabilidad durante seis horas, exhibiendo una potencia de enfriamiento promedio de aproximadamente 40 W/m2», dijeron los científicos. “La potencia máxima fotovoltaica alcanza hasta 120 W/m2 al mediodía sin cámara; Sin embargo, este valor disminuye ligeramente a 103,33 W/m2 cuando se cubre con la cámara. Además, la eficiencia de conversión de energía de la célula solar es del 11,42%, en comparación con el 12,92% de la célula solar desnuda”.

Tras el experimento de la vida real, el equipo realizó una simulación multifísica utilizando el software COMSOL para ver si el sistema podía mejorarse. “Los resultados de la simulación indican que mejorar el caudal de aire dentro de la cámara de aire y reducir su absortividad en la banda de luz solar puede mejorar significativamente el rendimiento. Cuando la capacidad de absorción del enfriador cae al 1%, la potencia de enfriamiento radiativo puede alcanzar hasta 68,74 W/m2”, explicaron además.

El sistema fue presentado en “Enfriamiento radiativo diurno en tándem y generación de energía solar”, publicado en Informes Celulares Ciencias Físicas. El equipo incluía científicos de China. Universidad de Aeronáutica y Astronáutica de Nanjing y el Academia China de Ciencias.

Investigadores de Estados Unidos aplicaron recientemente el enfriamiento radiativo al enfriamiento de paneles solares. Universidad Jiao Tong de Shanghái es China, Universidad Purdué en los Estados Unidos, el Instituto Catalán de Nanociencia y Nanotecnología y el Instituto de Ciencia de Materiales en España, y el Universidad de Ciencia y Tecnología de Jordania y Colegio Australiano de Kuwait.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!