Investigadores de la Universidad de Miyazaki en Japón han publicado un documento técnico de antecedentes sobre protocolos de prueba para abordar los desafíos únicos de los módulos fotovoltaicos integrados en vehículos (VIPV). Presenta los antecedentes de un nuevo modelo de probabilidad numérica que incorpora sombreado, sombreado parcial, sombreado dinámico, terreno irregular y curvaturas de módulos.
Investigadores de la Universidad de Miyazaki en Japón han publicado un informe sobre los avances en pruebas y protocolos reproducibles que abordan los desafíos de medir el rendimiento de módulos fotovoltaicos curvos integrados en vehículos (VIPV).
En el estudio”Ensayos y calificación de sistemas fotovoltaicos integrados en vehículos: antecedentes científicos”, publicado en Materiales de energía solar y células solares, El equipo de investigación dijo que su trabajo abordó los aspectos únicos de los módulos VIPV, como la curvatura y el impacto de la irradiación causados por el sombreado, el sombreado parcial, el sombreado dinámico y las condiciones irregulares del terreno.
«El cálculo estándar para los sistemas fotovoltaicos a menudo se basa en suposiciones simplificadas, como la ausencia de sombras, terreno plano, instalaciones estáticas e irradiancia solar uniforme», dijo el coautor Kenji Araki. revistapv. “Sin embargo, estas suposiciones no reflejan con precisión las condiciones del mundo real. Es esencial considerar las imperfecciones reales, incluida la presencia de sombras, terreno irregular, sistemas fotovoltaicos móviles e irradiancia solar no uniforme. Aunque estos factores no se discuten en común, afectan significativamente el rendimiento de los sistemas fotovoltaicos en la práctica”.
El equipo llevó a cabo pruebas iniciales de nuevos protocolos y validación en laboratorios e institutos de investigación geográficamente diversos, así como pruebas en simuladores solares aplicando protocolos acordados utilizando los mismos datos de calibración, así como pruebas ciegas. Para las pruebas circulares, Nanjing AGG Energy, China, proporcionó módulos rígidos cubiertos de vidrio, incluidos cuatro niveles de radio de curvatura.
El grupo señaló al menos ocho diferencias claves que deben abordarse para lograr modelos y mediciones precisas para los productos VIPV. Por ejemplo, utilizando un sistema de coordenadas locales que incluye rotación 3D, captura las zonas de sombra de las puertas, el capó, el parachoques y el parabrisas trasero del vehículo.
Se requieren cálculos vectoriales basados en una matriz de sombreado, en lugar de una relación o ángulo de sombreado. Las formas tensoriales, 4-Tensor, se utilizan para la respuesta angular a la luz incidente, en lugar de la curva lambartiana, y en lugar de la pérdida de coseno por los ángulos del panel fotovoltaico, se utiliza una descripción de la geometría diferencial utilizando la expresión vectorial de un elemento unitario, señalaron los investigadores.
Algunas de las diferencias fueron resumidas por Araki. “En el nuevo modelo, una matriz de sombreado tiene en cuenta el sombreado no uniforme en el cielo hemisférico. “Por el contrario, el análisis clásico se basa en una relación de sombreado escalar”, explicó, añadiendo que el nuevo método considera las células solares con superficies curvas y las analiza utilizando principios de geometría diferencial, “a diferencia del cálculo clásico, que supone que las células solares tienen una superficie plana.”
Además, el nuevo modelo utiliza el trazado de rayos “realizado en forma vectorial” en lugar de utilizar un enfoque de coseno, y en lugar de representar la respuesta angular y la modificación del ángulo de incidencia (IAM) como curvas basadas en el ángulo de incidencia, “el nuevo cálculo las representa como cuatro tensores”.
De cara al futuro, los investigadores planean desarrollar una “herramienta de estimación del ahorro de combustible” para camiones y autobuses con paneles fotovoltaicos. Según Araki, la validación basada en el seguimiento de 130 camiones hasta el momento está en curso. Además, hay otros proyectos previstos para abordar los desafíos en las pruebas de módulos desarrollados para la energía agrivoltaica, la construcción de energía fotovoltaica integrada, así como la energía fotovoltaica alpina y la energía fotovoltaica integrada en aviones, como los pseudosatélites de gran altitud (HAPS). ).
El trabajo de investigación es resultado del aporte colectivo de miembros de la CEI TC82 PT600 iniciativa que tiene como objetivo establecer estándares para los sistemas VIPV.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.