Científicos en Suiza han creado un modelo de dinámica de sistemas para la adopción de energía fotovoltaica y bombas de calor en edificios residenciales suizos hasta 2050. Han examinado varios escenarios para ver cómo el incentivo para la energía fotovoltaica afecta la adopción de bombas de calor y al revés, y han concluido que son necesarios fuertes cambios regulatorios para descarbonizar completamente el sector residencial.

Un grupo de investigación liderado por ETH Zúrich ha modelado la dinámica de adopción conjunta de energía fotovoltaica y bombas de calor (HP) en edificios residenciales suizos. Se utilizó un estudio de caso para el cantón suizo del Ticino, que incluye ciudades como Lugano y Bellinzona, y la simulación se prolongó hasta 2050 en diferentes escenarios regulatorios.

“Este estudio presenta un modelo de dinámica de sistemas (SD) que evalúa el proceso de adopción conjunta de soluciones fotovoltaicas y de calefacción (HS) en el sector residencial suizo. El modelo considera la interdependencia de estas decisiones ya que la evaluación de la instalación de un fotovoltaico incorpora la consideración de HS, y viceversa”, dijeron los académicos. «Se elige SD porque se conoce como un enfoque de modelado para el desarrollo de estrategias y una mejor toma de decisiones en sistemas complejos».

SD descompone un sistema en diferentes variables y las relaciones entre estas variables se trazan mediante un diagrama de bucle causal (CLD). En general, los investigadores utilizaron tres pilares en el modelo (a saber, el precio de la electricidad, la adopción de ho y la adopción de fotovoltaica) que se afectan entre sí. Incluye bucles de refuerzo (R) que amplifican los cambios y bucles de equilibrio (B) que buscan la estabilidad del sistema.

Los bucles R1 y R2 muestran mecanismos de refuerzo impulsados ​​por efectos de pares. “Los bucles de equilibrio B1 y B2 representan el número total fijo de edificios capaces de adoptar energía fotovoltaica o HP. Los bucles de refuerzo R3 y R4 constituyen dos facetas del mismo fenómeno, que describen cómo la proliferación de tecnologías basadas en la electricidad influye en los precios de la electricidad”, explicó el equipo.

R5 y B3 delinean otra consecuencia de la adopción de fotovoltaica y HP en la red, ya que la integración de estas tecnologías aumenta la volatilidad de la demanda de electricidad y conduce a la necesidad de reforzar la red por parte del operador de la red. “Los costos de actualización de la red provocan precios más altos de la electricidad para los consumidores finales, amplificando la adopción de energía fotovoltaica (R5) y contrarrestando la adopción de HP (B3). Finalmente, el bucle de refuerzo R6 representa la sinergia tecnoeconómica entre PV y HP. La instalación de una HP en un edificio mejora el atractivo económico de instalar un sistema fotovoltaico, en comparación con los edificios calentados con tecnologías no eléctricas”, agregaron los académicos.

La simulación se alimentó con tres bases de datos oficiales: una sobre plantas de producción de electricidad, la segunda sobre la idoneidad de los tejados para energía solar y la última era un registro de edificios y viviendas. Se utilizaron datos históricos del cantón de Ticino para calibrar aún más 49 parámetros del modelo. En total, se simularon seis escenarios regulatorios.

El “escenario base” abarca los incentivos y el marco regulatorio vigente, incorporando la regulación RUEn recientemente introducida, que entró en vigor este año. Estas disposiciones regulan la instalación de nuevos sistemas de calefacción, limitando la proporción de energía proporcionada por tecnologías que emiten carbono al 80% para los edificios nuevos y al 90% en caso de sustitución de la calefacción en un edificio existente.

Otro escenario probado fue “no RUEn”, un caso hipotético en el que no se toma ninguna de las acciones anteriores. Además, el equipo probó un escenario en el que existe un incentivo aún mayor para la instalación fotovoltaica, otro caso en el que el incentivo para HP es mayor que el de RUEn, un caso en el que la regulación exige una mayor instalación fotovoltaica y, por último, un escenario en el cual se aplica más instalación de HP.

Fotovoltaica instalada por escenario

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-600×418.jpg» datos-large-file= «https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-1200×837.jpg» tabindex=»0″ role=»button» src=» https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-600×418.jpg» alt width=»600″ height=»418″ >

Fotovoltaica instalada por escenario

Imagen: ETH Zurich, Reseñas de estrategias energéticas, CC BY 4.0

“Si bien la adopción de HP en los edificios habría experimentado un aumento incluso en ausencia de la regulación RUEn, el escenario Base proyecta una implementación de HP significativamente mayor: la proporción de edificios con HP en 2050 pasa del 54% en el caso sin RUEn escenario al 68% en el escenario Base”, afirmaron los científicos. “Se espera que la capacidad total fotovoltaica instalada crezca significativamente en todos los escenarios considerados. Como era de esperar, los dos escenarios con resultados más altos son los Altos Incentivos Fotovoltaicos y el Regulador Fotovoltaico, donde la capacidad fotovoltaica instalada alcanza los 500 MWp”.

Al concluir su artículo, el equipo dijo que «los resultados demuestran que ligeros ajustes en la política y el marco regulatorio actuales podrían permitir alcanzar de manera segura los objetivos de implementación fotovoltaica, pero se necesitan modificaciones importantes para descarbonizar completamente el sector residencial».

Los resultados fueron presentados en “Modelado de la dinámica de adopción conjunta de energía fotovoltaica y bombas de calor en edificios residenciales suizos: implicaciones para las políticas y los objetivos de sostenibilidad”, publicado en Revisiones de estrategias energéticas. Científicos de Suiza ETH Zúrich y el Universidad de Ciencias y Artes Aplicadas del Sur de Suiza realizó la investigación.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores del Instituto de Investigación Monash Suzhou y la Universidad de Queensland han desarrollado una tecnología de nanofiltración para extraer litio de salmueras de agua salada de baja calidad con alto contenido de magnesio. La tecnología logra una recuperación de litio del 90%, casi el doble del rendimiento de los métodos tradicionales, al tiempo que reduce los tiempos de extracción.

Delaware revistapv

Investigadores de Australia y China han desarrollado una tecnología innovadora que permite la extracción directa de litio de fuentes difíciles de procesar como el agua salada, que, según afirman, representa una parte sustancial del potencial mundial de litio.

Hasta ahora, hasta el 75% de las fuentes de agua salada ricas en litio del mundo han permanecido sin explotar debido a limitaciones técnicas, pero dadas las predicciones de que el suministro mundial de litio podría no satisfacer la demanda ya en 2025, creen los investigadores. que tienen una solución revolucionaria. .

Su tecnología es un tipo de sistema de nanofiltración que utiliza ácido etilendiaminotetraacético, o EDTA, como agente quelante para separar selectivamente el litio de otros minerales, especialmente el magnesio, que a menudo está presente en las salmueras y es difícil de eliminar.

El trabajo ha sido codirigido por el Dr. Zhikao Li del Instituto de Investigación Monash Suzhou y el Departamento de Ingeniería Química y Biológica de Jiangsu, China, y el Prof. Xiwang Zhang de la Universidad de Queensland en Australia.

«Nuestra tecnología logra una recuperación del litio del 90%, casi el doble del rendimiento de los métodos tradicionales, al tiempo que reduce el tiempo necesario para la extracción de años a apenas semanas», dijo el Dr. Li.

Según los investigadores, más allá de la impresionante eficiencia del método, el sistema también aborda importantes preocupaciones ambientales asociadas con la extracción de litio. A diferencia de los métodos convencionales que agotan los recursos hídricos vitales en las regiones áridas, la tecnología produce agua dulce como subproducto. La tecnología también convierte el magnesio sobrante en un producto valioso y de alta calidad que se puede vender, reduciendo el desperdicio y el impacto en el medio ambiente.

Los estudios para esta tecnología se llevaron a cabo en salmueras del lago Longmu Co y del lago Dongtai de China, y los resultados se publicaron en la revista Nature Sustainability esta semana.

“Las salinas de gran altitud en países como China (Tíbet y Qinghai) y Bolivia son ejemplos de áreas con condiciones de salmuera más duras que tradicionalmente han sido ignoradas. En áreas remotas desérticas, las grandes cantidades de agua, productos químicos e infraestructura necesaria para la extracción convencional tampoco están disponibles, lo que subraya la necesidad de tecnologías innovadoras”, dijo el Dr. Li.

“Con EALNF de la Universidad de Monash [EDTA-aided loose nanofiltration] tecnología, estas ahora pueden ser fuentes comercialmente viables de litio y valiosos contribuyentes a la cadena de suministro global”.

El sistema es flexible y está listo para usarse a gran escala, lo que significa que puede expandirse rápidamente desde pruebas hasta operaciones industriales completas, agregó el Dr. Li.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La startup estadounidense Sylvatex ofrece materiales activos de cátodos de óxidos metálicos mixtos fabricados con un proceso de síntesis continua y sin agua. Actualmente, la empresa está validando su tecnología en la cadena de suministro nacional de baterías de iones de litio y planea construir una línea piloto en California.

De Noticias ESS

Sylvatex, una startup de materiales activos catódicos con sede en EE.UU. UU., está desarrollando un proceso de bajo costo y más eficiente desde el punto de vista energético para sintetizar materiales catódicos para baterías de iones de litio. La empresa apunta su tecnología a baterías utilizadas en vehículos eléctricos (EV) y sistemas de almacenamiento de energía (ESS).

Su último proyecto validará su tecnología de cátodos de fosfato de hierro y litio (LFP) en dos tipos comunes de baterías de iones de litio (LIB). El proyecto cuenta con un presupuesto de 1,4 millones de dólares aportado por el Departamento de Energía de EE.UU. Agencia de Proyectos de Investigación Avanzada-Energía (ARPA-E) a través de su programa EVS4ALL, que acelerará la adopción de vehículos eléctricos en Estados Unidos, incluidas innovaciones en la fabricación de baterías y procesos de reciclaje.

“Nuestro proceso permite utilizar una gama más amplia de insumos con la adición de una materia prima de biorresiduos orgánicos secretos comerciales que abunda en oferta. Este aditivo permite que los materiales se unan a nanoescala, lo que permite nuestro proceso de fabricación eficiente”, dijo Virginia Klausmeier, directora ejecutiva de Sylvatex. Noticias ESS.

«Al utilizar este aditivo de origen biológico, hemos desarrollado un proceso de síntesis seca de un solo paso que reduce significativamente el consumo de energía, elimina el uso de agua y reemplaza los sulfatos metálicos con óxidos metálicos, eliminando así los desechos de sulfato de sodio. «, explicó, y agregó que La innovación permite una huella ambiental más pequeña junto con gastos de capital y costos operativos reducidos en comparación con los métodos convencionales.

El sitio del proyecto ARPA-E describe el proceso de materiales catódicos sin agua de Sylvatex como un enfoque «continuo simplificado» para procesar materiales basados ​​en LFP que podría «reducir el consumo de energía en un 80%, los residuos en un 60% % y el costo en un 60% en relación con el proceso comercial actual». proceso.»

En septiembre, Sylvatex anunció que había recibido una subvención que le permitiría iniciar una línea piloto a escala de megavatios con una producción prevista de 10 kg por día que se instalaría a principios de 2025 en Alameda, California. También planes anunciados para «demostrar la flexibilidad» de su proceso de fabricación CAM aplicándolo a las químicas LFP y níquel manganeso cobalto (NMC).

El tamaño de la subvención para acelerar la comercialización fue de $2,3 millones, otorgada por el programa Realizing Accelerated Manufacturing and Production for Clean Energy Technologies (RAMP) de la Comisión de Energía de California.

«Nuestra tecnología está diseñada para ser adaptable a diversas químicas de baterías, incluida CAM para baterías de estado sólido y otras soluciones de almacenamiento de energía de próxima generación», dijo Klausmeier.

Una colaboración con una startup de baterías para vehículos eléctricos con sede en Michigan Nuestra próxima energía (ONU) Este año también comenzó la producción y pruebas de células de vehículos eléctricos de gran formato.

A principios de año, Sylvatex envió muestras de evaluación de sus materiales a cinco empresas, incluido un fabricante mundial de automóviles, una empresa química mundial y una empresa de baterías de estado sólido.

Fundada en 2012, Sylvatex ha recaudado más de 20 millones de dólares en financiación, de los cuales aproximadamente la mitad han sido subvenciones de investigación no diluibles. «Esta financiación ha sido fundamental para respaldar nuestra investigación, el desarrollo del mercado de productos y los esfuerzos de ampliación a medida que trabajamos para satisfacer la creciente demanda de materiales de baterías sostenibles para el almacenamiento de energía y los vehículos eléctricos», dijo Klausmeier.

Entre sus inversores de capital de riesgo se encuentra Catalus Capital, con sede en EE.UU. UU., que actúa como inversor principal, junto con Amplify Capital y How Women Invest.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!