El techo de Estonia. Solar ha desarrollado nuevos paneles fotovoltaicos integrados en edificios (BIPV) con un ancho efectivo de 470 mm, ofreciendo salidas de potencia de 120 W o 180 W.
Especialista en bipv techo ha introducido una nueva serie de módulos solares de contacto con óxido de túnel (TOPCON) para aplicaciones residenciales. La línea de productos Velario Slim viene en dos versiones con salidas de 120 W y 180 W.
“La estrecha cobertura de techo efectiva de 470 mm de los paneles delgados de Velario se compara con el tamaño de 550 mm de Velario, pero mantiene las características distintivas del producto original, un diseño discreto y escandinavo que tiene como objetivo adaptarse a cualquier propiedad sin comprometer su atractivo estético, niveles excepcionales. de resistencia a las duras condiciones climáticas y un proceso de instalación fácil de 2 en 1”, dijo la compañía en un comunicado.
Los paneles cuentan con celdas TopCon dispuestas en un diseño de 2 × 12 para el modelo de 120 W y un diseño de 2 × 18 para el modelo de 180 W. Ambas versiones incluyen vidrio frontal de hierro bajo templado de 3,2 mm y acero Galvanizado de 0,5 mm con una hoja de espalda recubierta negra. El panel de 120 W ofrece una eficiencia del 18,6%, mientras que el modelo de 180 W logra el 19,3%.
«Nuestros otros productos ya tienen un alto rendimiento cuando se trata de eficiencia energética, pero el Velario Slim permitirá que se cubra aún más espacio en el techo y se genere más energía libre», dijo el CEO Andrés Anijalg. «Esto será especialmente significativo para los techos pequeños o irregulares que a menudo tienen el mayor riesgo de quedarse con áreas descubiertas debido a que estos espacios sobrantes son demasiado pequeños para adaptarse a los paneles más grandes».
Este contenido está protegido por los derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Investigadores irlandeses han propuesto, por primera vez, un enfoque determinista para diseñar la relación de carga del inversor (ILR) en proyectos fotovoltaicos a escala de servicios públicos. Se afirma que la novedosa metodología simplifica el proceso de diseño y reduce la variabilidad del rendimiento, al tiempo que mejora la certeza de la inversión.
Un equipo de científicos de la University College Cork de Irlanda ha propuesto un nuevo enfoque para diseñar la relación de carga del inversor (ILR) para plantas de energía fotovoltaica a gran escala.
Los investigadores describieron el ILR como la relación entre la potencia de salida del conjunto fotovoltaico de CC en relación con la potencia nominal de CA de la unidad de conversión de energía (PCU). «Si el valor ILR es bajo, puede resultar en una menor viabilidad económica del sistema», explican. «Por otro lado, aumentar el valor del ILR puede causar problemas con la operación de despacho y pérdidas por recorte».
En el estudio”Un método refinado para optimizar la relación de carga del inversor en una planta de energía fotovoltaica a gran escala.”, publicado en Informes energéticosel grupo de investigación dijo que identificar el diseño ILR óptimo para energía solar a gran escala es «un esfuerzo continuo» tanto a nivel industrial como de investigación, y enfatizó que, hasta la fecha, no se ha desarrollado ningún enfoque ILR determinista, que podría ayudar a los desarrolladores de proyectos fotovoltaicos en Identificar el mejor valor de la PCU CC/CA en condiciones geográficas, climáticas y económicas específicas.
“A diferencia de los métodos metaheurísticos o heurísticos, este enfoque simplifica el proceso de diseño y reduce la variabilidad del rendimiento”, enfatizaron los académicos, señalando que la metodología propuesta, en lugar de centrarse en el sobredimensionamiento, optimiza la potencia nominal del inversor instalado. para una instalación fotovoltaica determinada. «Al mejorar la certeza de la inversión, proporciona una estimación confiable para maximizar los retornos económicos con un riesgo mínimo».
El nuevo enfoque se implementa en dos pasos. En primer lugar, se supone que no es necesario que el inversor conecte el sistema fotovoltaico a la red. En segundo lugar, también se supone que la red funciona con CA, lo que requiere un inversor. «Luego, se determina la capacidad óptima del inversor para optimizar los ingresos, teniendo en cuenta el costo de inversión adicional para la PCU CC/CA», explicaron además los académicos, señalando que el algoritmo del sistema tiene en cuenta las especificaciones de la PCU CC/CA. la tarifa de alimentación y la generación fotovoltaica CC estimada.
El grupo probó este novedoso enfoque en una planta de energía fotovoltaica de 5 MW ubicada en Kelmoney, Irlanda, con el objetivo de maximizar su rentabilidad anual. La instalación utiliza 16.380 módulos solares proporcionados por el fabricante chino. Largocon 26 módulos en paralelo y 630 cadenas. También utiliza 29 cadenas de inversores suministradas por China. Huawei. Los datos de temperatura y radiación se recopilarán a partir de una simulación del sitio utilizando el software PVsyst.
Los investigadores afirman que este análisis les permitió encontrar el valor ILR óptimo para la planta en 1,4528, que destacaron es inferior al 1,4656 diseñado por PVsys. «El análisis muestra que la limitación de energía se produce a 5,22 MW, que es la potencia nominal óptima del inversor», dijeron. «Sólo se recorta la generación superior a 5,22 MW, y la energía por debajo de este umbral se utiliza para calcular las anualidades estimadas de los ingresos del sistema».
La saturación del inversor se produce cuando la energía CC de un sistema fotovoltaico es mayor que el tamaño de entrada máximo del inversor. Esto satura el inversor y el exceso de energía CC no se convierte en CA.
Los científicos enfatizaron que el valor más bajo del ILR corresponde a un aumento en las anualidades de ganancias anuales.
También afirmaron que la metodología también podría usarse para sistemas fotovoltaicos en tejados o para evaluar la viabilidad económica del sitio para plantas de energía fotovoltaica existentes. «Posteriormente puede proporcionar recomendaciones para actualizar los componentes de PVPP para lograr una mayor rentabilidad», concluyeron. «Este enfoque es particularmente beneficioso para abordar los posibles aumentos en el envejecimiento de los inversores o módulos fotovoltaicos».
En marzo, un equipo de investigación internacional publicó una investigación que investiga el efecto de recorte del inversor sobre la mitigación de las pérdidas por suciedad en los sistemas fotovoltaicos y explicó que esta estrategia puede no ser tan efectiva como se piensa.
Más tarde, en julio, investigadores de Malasia propusieron un nuevo enfoque para identificar la relación óptima de tamaño de energía para equilibrar la captura de energía fotovoltaica con los costos del inversor. Se dice que el modelo calibrado refleja con precisión la relación entre la eficiencia del inversor y el comportamiento del sistema en el mundo real.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Los últimos módulos de contacto pasivado con óxido de túnel (TOPCon) tipo n de JinkoSolar entregaron un mayor rendimiento energético por vatio que los módulos de contacto posterior (BC) tipo n de un competidor en una prueba de campo de tres meses en Kagoshima, Japón , bajo diferentes niveles de irradiancia.
JinkoSolarSe ha descubierto que los módulos TOPCon de tipo n ofrecen un rendimiento energético por vatio significativamente mayor en comparación con los módulos BC de tipo n durante una prueba de campo de tres meses.
La prueba de campo, realizada por TÜV Nord en una base de pruebas de campo en Kagoshima, Japón, se llevó a cabo de octubre a diciembre de 2024 como parte de un estudio de un año.
Encontró que los módulos TOPCon de JinkSolar generaron un promedio de 8,82% más energía por vatio que los módulos BC tipo n desarrollados por un fabricante anónimo, con la ganancia mensual más alta alcanzando el 9,84%.
La configuración de prueba consistió en dos módulos de cada fabricante instalados en soportes fijos a 1,2 metros del suelo con un ángulo de inclinación de 32 grados. La potencia inicial de los módulos se midió utilizando el método SAT, sin considerar la corrección espectral en los resultados de la prueba.
El estudio recopiló datos de rendimiento energético (DC) con un intervalo de muestreo de un minuto, junto con la irradiancia del plano del módulo, la temperatura de la lámina posterior, la temperatura ambiente, la humedad y la presión atmosférica, todo también en intervalos. de un minuto.
El rendimiento energético normalizado de los módulos TOPCon de JinkoSolar alcanzó los 294,2 kWh/kW durante los tres meses, en comparación con los 270,2 kWh/kW de los módulos BC de tipo n.
El análisis del rendimiento energético bajo diferentes niveles de irradiancia encontró que durante la mayor parte del período de prueba, los niveles de irradiancia quedaron por debajo de 1000 W/m². En estas condiciones, el aumento de rendimiento energético promedio de los módulos TOPCon tipo n alcanzó el 8,05%.
JinkoSolar agregó que la temporada de lluvias de Kagoshima era «un escenario ideal para mostrar el rendimiento superior en condiciones de poca luz de los módulos TOPCon». Sus módulos lograron una ganancia de energía diaria promedio del 9,13% por vatio durante un período continuo de lluvia de 15 días del 15 al 29 de octubre.
En condiciones de mayor irradiancia (por encima de 1.000 W/m²), el rendimiento energético total de tres meses de los módulos TOPCon fue de 174,04 kWh, con un aumento de rendimiento por vatio del 8,10 % en comparación con los módulos BC de tipo n.
«Esto indica que los módulos TOPCon pueden ofrecer un mayor rendimiento tanto en climas lluviosos de baja irradiancia como en climas soleados de alta irradiancia, gracias a su excelente rendimiento con poca luz y su alto coeficiente de bifacialidad», dijo JinkoSolar.
El estudio también midió el índice de rendimiento (PR) de cada módulo comparando el rendimiento energético real con el rendimiento teórico basado en la potencia nominal y las condiciones climáticas específicas. Calculó el valor PR de los módulos TOPCon en 97,8%, en comparación con el 89,9% de los módulos BC tipo n.
JinkoSolar dijo que esto demuestra «que los módulos TOPCon bifaciales con alta bifacialidad ofrecen ventajas significativas en la eficiencia del rendimiento energético para las centrales eléctricas montadas en tierra».
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Concebido por un equipo de investigación internacional, el modelo también se puede utilizar para proyectos híbridos eólico-solar. Según sus creadores, soluciones proporcionan prácticas para la optimización del uso del suelo y la planificación de energías renovables.
Un grupo de investigadores dirigido por Arabia Saudita Universidad Rey Fahd de Petróleo y Minerales (KFUPM) ha desarrollado un novedoso modelo de toma de decisiones espacio-temporal para el desarrollo de plantas híbridas de energía eólica fotovoltaica, así como proyectos individuales de energía eólica y fotovoltaica, en Arabia Saudita.
«Nuestro nuevo modelo puede identificar las ubicaciones óptimas para la energía solar fotovoltaica a gran escala, parques eólicos terrestres y sistemas híbridos en Arabia Saudita», dijo el autor principal de la investigación, Mohamed R.Elkadeem, dijo revistapv. “A diferencia de los enfoques tradicionales que se basan en datos promediados a largo plazo o fuentes de energía únicas, introdujimos un novedoso modelo de toma de decisiones espacio-temporal (STDMM) que aprovecha el conjunto de datos de reanálisis horario ERA5 junto con modelos espaciales de alta precisión de más de veinte restricciones y evaluaciones. criterios. El modelo proporciona una solución práctica para la optimización del uso de la tierra y la planificación de energías renovables (RE)”.
¿Está interesado en obtener más información sobre Arabia Saudita?
¡Únase a nuestro evento presencial en Riad! La segunda edición de la Conferencia sobre Energía Limpia SunRise Arabia se llevará a cabo el 19 de febrero de 2025. Reserva tu entrada ahora.
ERA5 es un conjunto de datos de reanálisis que proporciona estimaciones horarias de una gran cantidad de variables climáticas atmosféricas, terrestres y oceánicas. Puede calcular el factor de capacidad (CF), la generación potencial técnica anual (ATPG) y el costo nivelado de la electricidad (LCOE) de un proyecto, al tiempo que estima los costos de la infraestructura eléctrica.
Para identificar los mejores sitios para el despliegue eólico y solar, el método utiliza 1 km2 Análisis a nivel de cuadrícula basado en un modelo híbrido SIG-Bayesiano Best Worst Method (BWM) de múltiples capas, que es un método de toma de decisiones multicriterio para encontrar los pesos óptimos de un conjunto de criterios calculando en las preferencias de una sola decisión . -fabricante (DM). Se utiliza un modelo de complementariedad energética para analizar plantas híbridas eólicas y solares.
«La combinación de GIS y modelado bayesiano BWM garantiza que la selección del sitio sea integral y equilibrada, incorporando criterios impulsados por expertos para optimizar la toma de decisiones del proceso de selección del sitio», dijeron los científicos, señalando que ERA5 tiende a funcionará mejor para las evaluaciones de recursos solares. en comparación con los recursos eólicos.
A través del nuevo modelo, los investigadores encontraron que alrededor del 32% del país es apto para el desarrollo de energía solar y el 36% para la eólica.
«El estudio propone que aproximadamente el 4,81 % del terreno se asigna a proyectos solares y el 4,74 % a proyectos eólicos para satisfacer el 50 % de las necesidades energéticas de Arabia Saudita en 2030, lo que se traducirá en el desarrollo de 95,12 GW de energía solar fotovoltaica y 74,45 GW de turbinas eólicas». afirmó el equipo. «El análisis tecnoeconómico revela que los recursos solares son relativamente homogéneos en todo el país, mientras que los recursos eólicos muestran una mayor variabilidad espacial, lo que afecta los costos y la eficiencia del proyecto».
Su análisis también mostró que el El LCOE de la energía solar oscila entre 43 $/MWh y 78,6 $/MWh, alcanzando el valor medio los 52,6 $/MWh. En cuanto a la energía eólica, se encontró que el LCOE tenía un rango más amplio de 34,8 $/MWh a 125 $/MWh.
Según el equipo de investigación, el método propuesto podría abrir nuevos mercados para herramientas de planificación y optimización de energías renovables, al servicio de desarrolladores, gobiernos y empresas de servicios públicos en Arabia Saudita. “El modelo no solo reduce los costos, sino que también acelera la instalación eficiente de sistemas de energía renovable a escala de servicios públicos, contribuyendo a los objetivos de Arabia Saudita de lograr una participación del 50% de las energías renovables en la generación de electricidad. para 2030 y un 50% de generación de energía a partir de gas natural y alcanzar Net-Zero. Emisiones para 2060”, Elkadem dicho.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Diecisiete fiscales generales estatales de Estados Unidos han instalado al Congreso a conservar los créditos fiscales para la energía limpia, citando el efecto “catalítico” de la Ley de Reducción de la Inflación (IRA) sobre el crecimiento económico, especialmente en los distritos republicanos.
Una coalición de 17 fiscales generales estatales de EE.UU. UU. envió una carta instando al Congreso a conservar inversiones bajo la IRA.
Desde la aprobación del IRA en 2022, las empresas han invertido casi 500 mil millones de dólares en energía con bajas emisiones de carbono y manufactura nacional, y la inversión privada ha superado entre cinco y seis veces el gasto público.
La coalición instó al Congreso a conservar importantes incentivos en el código tributario, incluidos 30D, 45X, 45Y, 48C y 48E, así como los programas de subvenciones y préstamos asociados con ellos.
Si bien los analistas han coincidido en general en que es poco probable que la administración Trump derogue por completo el IRA, algunos han sugerido que adoptará un enfoque de “bisturí”, recortando incentivos en ciertos sectores como los vehículos eléctricos o la energía eólica marina, o eliminando los créditos fiscales ya en 2027, en lugar de hacerlo. que a mediados de la década de 2030.
«Nuestra nación está fortaleciendo la seguridad energética nacional, reduciendo los costos de energía, diversificando nuestros recursos energéticos internos, reconstruyendo nuestra economía fabricante nacional, reforzando y modernizando la infraestructura crítica y creando empleos bien remunerados y al mismo tiempo reduciendo la contaminación nociva», decía la carta.
Los fiscales generales de California, Colorado, Connecticut, Delaware, Hawaii, Illinois, Maine, Maryland, Minnesota, Nueva Jersey, Nuevo México, Nueva York, Carolina del Norte, Rhode Island, Vermont y Wisconsin se unieron al fiscal general Campbell para enviar la carta.
La carta de los fiscales generales destacó varios proyectos importantes que ya están beneficiando a las comunidades estadounidenses, tanto en distritos republicanos como demócratas:
Gracias al Crédito Fiscal para Proyectos de Energía Avanzada Calificados de la IRA (Sección 48C), Siemens está invirtiendo 150 millones de dólares en su primera fábrica de transformadores de potencia con sede en Estados Unidos en Charlotte, Carolina del Norte. Además de contribuir a la confiabilidad y seguridad de la red energética de EE. UU., esta inversión creará más de 550 puestos de trabajo en logística, mecánica, ensamblaje y otras funciones, con un salario promedio de más de $80 000.
Los incentivos de la IRA han estimulado un renacimiento de la industria automotriz de Michigan, con más de 18.000 nuevos empleos anunciados en la industria de vehículos eléctricos en el estado. Our Next Energy está invirtiendo 1.600 millones de dólares en una gigafábrica de baterías para vehículos eléctricos en Van Buren Township, Michigan, donde espera emplear a más de 2.000 personas para 2027. La mayoría de las inversiones privadas en la industria de vehículos eléctricos en los últimos años se deben a incentivos creados por el IRA y la Ley de Infraestructura Bipartidista (BIL).
Una nueva fábrica de baterías de 4.000 a 5.000 millones de dólares cerca de Atlanta, Georgia, creará alrededor de 3.500 puestos de trabajo, mientras que una planta de fabricación de baterías de 3.500 millones de dólares en las afueras de Charleston, Carolina del Sur, reutilizará baterías al final de su vida útil y, en última instancia, creará 1.500 puestos de trabajo.
«Estos son sólo una pequeña muestra de los muchos proyectos que avanzan gracias a la promesa de créditos fiscales IRA», decía la carta. “La derogación de créditos como el crédito de la Sección 45X para manufactura avanzada, el crédito de la Sección 48C para inversiones en energía avanzada y el crédito de inversión en electricidad limpia de la Sección 48E podría obstaculizar estos importantes proyectos, dejando varadas las inversiones privadas y dejando brechas donde los empleos y los flujos de ingresos estaban limitados. esperado.»
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
La Asociación Sudafricana de la Industria Fotovoltaica predice que el despliegue se acelerará a medida que una sólida cartera de proyectos públicos y privados a escala de servicios públicos compense la disminución de las instalaciones con respecto a los niveles de 2023.
Sudáfrica agregó aproximadamente 1,1 GW de energía solar en 2024, según cifras de la Asociación Sudafricana de la Industria Fotovoltaica (SAPVIA).
La cifra es inferior a los 2,6 GW de nueva capacidad instalada en 2023, pero aún representa la mayor parte de las adiciones agregadas. en toda África el año pasado.
El Dr. Rethabile Melamu, director ejecutivo de SAPVIA, dijo: revistapv La evolución de la industria de suministro de energía de Sudáfrica impulsó la adopción de energía renovable en 2024, después de que la demanda impulsó el mercado el año anterior en respuesta a la reducción de carga. «La reestructuración de la industria de suministro de energía junto con las reformas regulatorias en Sudáfrica ha llevado a la proliferación del desarrollo y despliegue de proyectos del sector privado para PPA bilaterales y aplicaciones de comerciantes/agregadores de energía», dijo Melamu. «Este seguirá siendo el mayor motor de crecimiento del mercado fotovoltaico a gran escala durante los próximos dos años».
Las adquisiciones privadas han liderado el desarrollo del oleoducto a escala de servicios públicos de Sudáfrica desde principios de 2023, explicó Melamu. Un total de 2.738 MW en 384 proyectos, de todos los tamaños de capacidad, se registraron ante el regulador nacional de energía en 2023, seguidos de 2.880 MW en 454 proyectos en 2024. Melamu dijo que estos proyectos se encuentran en varias etapas de operación, construcción y cierre financiero, con una gran parte de los registrados en los últimos dos años está previsto que entre en funcionamiento en 2025 o 2026.
Mientras tanto, ha continuado la contratación pública de proyectos a escala de servicios públicos, con seis proyectos solares a escala de servicios públicos, por un total de 708 MW, que alcanzarán el cierre financiero en 2023 y 2024. Melamu dijo que estos proyectos entrarán en construcción a principios de 2025, con 75 MW ya. bajo construcción.
el séptima ronda del Programa de Adquisición de Productores Independientes de Energía Renovable de Sudáfrica (REIPPPP) tuvo lugar el año pasado, según dijo Melamu revistapv resultó en 1760 MW de capacidad en ocho proyectos a una tarifa promedio de $0,0252/kWh. Se espera que estos proyectos alcancen el cierre financiero a principios de 2026, antes de entrar en construcción a lo largo de ese año.
La saludable cartera de desarrollo de Sudáfrica significa que SAPVIA espera que las adiciones anuales de energía solar aumenten en los próximos años. La asociación pronostica aproximadamente entre 2,5 GW y 3 GW de nueva capacidad solar este año, a través de una combinación de adquisiciones públicas y privadas, y aumentará a una previsión de 3,5 GW a 4 GW en 2026.
Melamu agregó que el establecimiento de un mercado mayorista de electricidad, cuya implementación está prevista para 2031 como muy pronto, junto con la inversión en infraestructura de transmisión, impulsará aún más el crecimiento en el mercado solar fotovoltaico a gran escala en los próximos dos a cinco años.
En otros lugares, se espera que la reducción de costos en la tecnología de sistemas de almacenamiento de energía solar y de baterías (BESS) traiga un aumento en el despliegue de energía solar y BESS en el mercado C&I de Sudáfrica, dijo Melamu, junto con factores que incluyen la inseguridad de la red debido al envejecimiento de la distribución municipal y los beneficios de BESS como arbitraje tarifario y gestión de picos de demanda.
Melamu también dijo que, aunque el número de instalaciones residenciales de energía solar y BESS se desaceleró en 2024 en comparación con 2023, los gobiernos nacionales y locales están evaluando incentivos fiscales y esquemas de créditos de alimentación para ayudar a impulsar la adopción específicamente entre los hogares. de ingresos medios y bajos.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
16 de mayo de 2024: NERC Evaluación de confiabilidad de verano (SRA) de 2024 encuentra que una gran parte de América del Norte sigue en riesgo de sufrir escasez de suministro, mientras que otras áreas muestran un riesgo reducido debido a la adición de recursos. Los eventos de calor esperados en áreas extensas que afectan la generación, la producción eólica o los sistemas de transmisión, junto con el crecimiento de la demanda en algunas áreas, están contribuyendo a los riesgos de adecuación de los recursos y la transmisión. Se evalúa que todas las áreas tienen un suministro adecuado para la carga máxima normal debido, en gran parte, a un récord de 25 GW de capacidad solar adicional que se agregó desde el año pasado. Sin embargo, los riesgos energéticos están aumentando en varias áreas cuando la producción solar, eólica e hidroeléctrica es baja.
«La demanda está creciendo en muchas áreas a un ritmo rápido con la adopción de vehículos eléctricos y la construcción de nuevos centros de datos, lo que pone a prueba algunas partes del sistema», dijo Mark Olson, gerente de Evaluaciones de Confiabilidad de NERC. «Las preocupaciones sobre la adecuación en áreas de crecimiento están siendo mitigadas parcialmente por nuevos acuerdos de transferencia firme, el crecimiento en la respuesta de la demanda y los retiros pospuestos de generadores».
La evaluación, resumida en el Vídeo de la SRA 2024constata un aumento significativo de la demanda, especialmente en el suroeste, Texas y Columbia Británica. Al igual que el año pasado, se evalúa que todas las áreas tienen un suministro adecuado para las condiciones y carga máxima normal. Sin embargo, la SRA identifica siete áreas (Operador del Sistema Independiente del Medio Continente, MRO-SaskPower, NPCC-Nueva Inglaterra, Texas RE-ERCOT, WECC-Columbia Británica, WECC-California/México y WECC-Suroeste) como en «riesgo elevado» de emergencias energéticas durante condiciones extremas. Además del crecimiento de la demanda y los eventos climáticos extremos, esto se debe a los recientes retiros de generadores, el desempeño de los generadores eólicos, la sequía y los cortes no planificados (o una combinación de estos factores), que pueden resultar en reservas. insuficientes.
«Uno de los desafíos clave que enfrentan los operadores a medida que evoluciona la combinación de recursos es cómo superar los períodos nocturnos de verano con menos recursos disponibles a su disposición», dijo John Moura, director de Evaluaciones de Confiabilidad y Análisis de Rendimiento de NERC .
En Texas y California, donde los recursos solares fotovoltaicos constituyen una gran parte de la combinación de recursos, el riesgo de escasez de suministro de electricidad se produce al final de la tarde y en las horas de la noche a medida que la producción solar disminuye, pero la demanda sigue siendo alta. El suministro y la infraestructura de gas natural son de vital importancia para la confiabilidad de la red, particularmente porque los recursos energéticos variables satisfacen más necesidades energéticas. Si bien no se prevén impactos en la confiabilidad del sistema eléctrico para el próximo verano, NERC continúa enfatizando la creciente importancia de la coordinación del gas y la electricidad. NERC recomienda que los Coordinadores de Confiabilidad y las Autoridades de Equilibrio estén al tanto de las interrupciones de la infraestructura de suministro de gas natural y los planos de mantenimiento que puedan afectar a los generadores en sus áreas.
La SRA identifica otros problemas de confiabilidad que deben tenerse en cuenta antes del verano. En particular, la respuesta de los recursos basados en inversores (IBR) a las perturbaciones del sistema, que afectan a las instalaciones solares, el almacenamiento en baterías y la generación tradicional, es una preocupación constante.
NERC Estrategia IBR y FERC Orden nº 901 Describe los pasos que NERC y la industria pueden tomar para garantizar que los IBR funcionen de manera confiable y que la planificación del sistema tenga en cuenta sus características. La evaluación también hace varias recomendaciones que la industria y los responsables políticos deben considerar implementar antes del inicio de la temporada:
Los Coordinadores de Confiabilidad, Autoridades de Equilibrio y Operadores de Transmisión en las áreas de riesgo elevado deben:
Revisar los planos operativos estacionales y los protocolos para comunicar y resolver posibles déficits de suministro en previsión de niveles de demanda potencialmente extremos.
Emplear procedimientos conservadores de coordinación de cortes de generación y transmisión acordes con los pronósticos meteorológicos a largo plazo para garantizar la disponibilidad adecuada de recursos.
Involucrar a los reguladores y formuladores de políticas estatales o provinciales para prepararse para la implementación eficiente de los mecanismos de gestión del lado de la demanda exigidos en los planos operativos.
Los reguladores estatales y la industria deben contar con protocolos implementados a principios del verano para gestionar las solicitudes emergentes de los generadores de exenciones de restricciones de calidad del aire.
El proceso de evaluación de confiabilidad de NERC es una evaluación de confiabilidad coordinada entre el Subcomité de Evaluación de Confiabilidad de NERC, las Entidades Regionales y el personal de NERC con proyecciones de demanda y recursos obtenidos de las áreas de evaluación. La SRA tiene como objetivo informar a los líderes de la industria, planificadores, operadores y organismos reguladores para que estén mejor preparados para tomar las medidas necesarias para garantizar la confiabilidad del sistema de energía en masa para el próximo período de verano.
La electricidad es un componente clave del tejido de la sociedad moderna y NERC, como Organización de Confiabilidad Eléctrica, sirve para fortalecer ese tejido. La visión de ERO Enterprise, que está compuesta por NERC y las seis entidades regionales, es un sistema de energía a granel norteamericano altamente confiable y seguro. Nuestra misión es asegurar la reducción eficaz y eficiente de los riesgos para la confiabilidad y seguridad de la red.
La Asociación Africana de la Industria Solar (AFSIA) dice que los proyectos a escala de servicios públicos dominaron las nuevas incorporaciones de energía solar en África en 2024, y las instalaciones de almacenamiento se multiplicaron por diez.
África desplegará 2,5 GW adicionales de energía solar en 2024, según AFSIANueva “Perspectiva solar de África 2025” informar.
Las cifras de AFSIA, que no incluyen las instalaciones residenciales, elevan la capacidad solar combinada del continente a 19,2 GW. Dijo que las nuevas incorporaciones solares del año pasado representaron el 0,5% de toda la nueva capacidad global, un nivel registrado por última vez en 2013.
«Una proporción tan baja de negocios no hace justicia al potencial solar africano ni a la necesidad de nueva generación de energía en todo el continente», afirmó AFSIA. «Se espera que las corrientes de financiación evolucionen en los próximos años para que África pueda explotar plenamente su inigualable potencial solar».
Hay optimismo en que el despliegue se acelerará en los próximos años. En 2024, se anunciaron 40 GW de nuevos proyectos, según el informe, lo que representa un aumento del 21% en la cartera de proyectos en comparación con 2023.
AFSIA dijo que Sudáfrica y Egipto representaron alrededor del 78% de las nuevas incorporaciones fotovoltaicas de África el año pasado, mientras que Sudáfrica contribuyó con aproximadamente la mitad y Egipto con el 28%. Sin embargo, AFSIA dijo que espera que la distribución de la energía solar cambie en 2025 a medida que comiencen a construirse proyectos emblemáticos en otros países.
AFSIA también analizó el porcentaje de energía solar en la combinación energética general de cada país africano. La República Centroafricana actualmente lidera esta métrica, con la energía solar representando el 43,1% de la combinación energética del país, seguida por Mauritania con el 20,7% y Namibia con el 13,4%. Un total de siete países africanos tienen cifras superiores al 10%, mientras que 21 producen actualmente el 5% o más de la electricidad que se consume a través de energía solar.
La energía fotovoltaica a escala comercial representó el 72% de las nuevas instalaciones solares en África en 2024, en comparación con el 32,4% del año anterior. En cifras absolutas, esto se traduce en 1,78 GW en instalaciones a gran escala en 2024, en comparación con los 521 MW del año anterior.
AFSIA dijo que los proyectos a escala de servicios públicos dominaron las nuevas incorporaciones solares en África el año pasado, en contraste con los dos años anteriores, cuando el segmento comercial e industrial (C&I) lideró el crecimiento, principalmente debido a la evolución del mercado en Sudáfrica.
El informe señaló que el mercado de C&I sigue siendo fuerte, con casi 6 GW de proyectos cautivos y 1,7 GW de proyectos rodantes anunciados en 2024. Si bien la mayoría de los próximos proyectos rodantes se encuentran en Sudáfrica, AFSIA dijo que la mayoría de los proyectos cautivos de C&I están fuera del país.
AFSIA dijo que el mercado de almacenamiento de energía de África creció rápidamente en 2024, con una capacidad total instalada que alcanzó 1,64 GWh, diez veces más que los 157 MWh en 2023. La asociación dijo que espera un crecimiento continuo, con 18 GWh de proyectos de almacenamiento ahora en desarrollo.
El informe dice que la expansión del mercado está haciendo que la energía solar más almacenamiento sea el estándar para proyectos a escala de servicios públicos y actualizaciones de plantas. Países como Sudáfrica, Senegal, Malawi, Botswana, Tanzania, Namibia y Mauricio están llevando a cabo iniciativas de almacenamiento a gran escala con una capacidad combinada superior a los 500 MW.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
El parque solar Al Dhafra de 2 GW cubre un área de 21,5 kilómetros cuadrados en las afueras arenosas del suburbio de Dhafra, cerca de Abu Dhabi. revistapv La visitamos para conocer todos los detalles sobre las especificaciones de la planta y cómo contribuye al panorama energético local.
Rara vez llueve en el desierto de Abu Dhabi, pero los cielos se abrieron cuando revistapv Visitado en enero para ver los 2 GW. Parque solar Al Dhafra. Los ingenieros locales nos dicen que es la planta solar de un solo sitio más grande del mundo y que produce suficiente energía para abastecer a 200.000 hogares.
Algunos de los 3,8 millones de paneles que contienen son visibles desde el centro de visitantes, pero el ojo humano no puede captar mucho.
Por suerte, la lluvia amaina y tenemos la oportunidad de caminar entre los paneles. La escala de la planta nos obliga a desplazarnos hasta el centro del parque. Tarda varios minutos.
Al salir de la furgoneta podemos oír el ruido de los seguidores: los paneles están montados en un total de 30.000 seguidores.
Los rastreadores tienen varios modos diferentes, incluido el seguimiento automático (sigue la trayectoria del sol con un algoritmo astronómico junto con el retroceso), el modo viento (se adapta a condiciones de viento), el modo lluvia (se detiene en ciertos ángulos si llueve ), el modo limpieza (establece los paneles en un ángulo específico para limpieza manual El parque cuenta con 2.000 robots de limpieza), y modo horizontal (para mantenimiento).
Monitorear una operación tan monumental es un desafío. Tiene 20 estaciones de seguimiento meteorológico y un millón de puntos de datos de señales. Los ingenieros de Al Dhafra confiaron en una cadena de 8.000 inversores que garantizan un alto nivel de tiempo de actividad. Estos son hechos por Sungrow.
La planta tiene tres especificaciones de módulos diferentes, que utilizan células de TrinaSolar, Suntech y Jinko Solar. Los módulos TSM-DEG19C.20 de Trina tienen una eficiencia del 21,20%; Los módulos STPXXXS-C72/Pmh+ de Suntech tienen una eficiencia del 21,30 %; y los módulos 72HL4-BDV tipo N de Jinko Solar ofrecen una eficiencia del 21,87%. Todos vienen con garantías de energía de 30 años.
Inaugurado en noviembre 2023Al Dhafra no es la planta más nueva de Abu Dhabi. En el centro de visitantes, el equipo cuenta con pv magazine que actualmente están construyendo la sexta planta solar: Al Dhafra es ‘PV2’ en una serie de parques masivos a escala de servicios públicos. Cada uno es propiedad de diferentes accionistas. Emirates Water and Electricity Co. (EWEC) es el comprador.
El proyecto de energía independiente fotovoltaica solar de 2 GW de Dhafra
» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2023/11/AlDhafra-Inauguration-600×422.jpg» data-large-file=»https://www .pv-magazine.com/wp-content/uploads/2023/11/AlDhafra-Inauguration.jpg» tabindex=»0″ role=»botón» src=»https://www.pv-magazine.com/wp-content/uploads/2023/11/AlDhafra-Inauguration-600×422.jpg» alt width=»600″ height=»422″ >El parque solar de Dhafra de 2 GW
Imagen: EWEC
Los gerentes de Al Dhafra, un consorcio compuesto por el gigante energético francés EDF Renewables, el inversionista estatal emiratí Masdar y el desarrollador solar chino Jinko Power están disponibles para contarnos todo sobre el desarrollo del parque, su financiamiento y la tecnología que respalda su operación.
El director de operaciones de Masdar, Abdulaziz Alobaidli, señaló que el desarrollo de la planta se llevó a cabo durante la pandemia, lo que generó múltiples desafíos. Dicho esto, explicó que la perseverancia del equipo de ingeniería les permitió mantener el rumbo y en un día sumaron hasta 10 MW de capacidad.
Masdar, dijo Alobaidli, está a la vanguardia de la tecnología de energía renovable, con desarrollos en más de 40 países. «La capacidad de nuestra cartera supera los 31 GW y tenemos el ambicioso objetivo de alcanzar los 100 GW para 2030».
¿Será esto posible? Alobaidli tiene esperanzas. «Este es un mercado en el que se puede avanzar muy rápidamente porque gran parte del desarrollo anterior ya lo ha realizado el gobierno». Una diferencia de Europa, quiere decir. Sin embargo, Masdar es “agnóstico del mercado”.
El director ejecutivo de Oriente Medio de EDF Renewables, Oliver Bordes, y el vicepresidente de licitaciones internacionales de Jinko Power, Mothana Qteishat, dijeron que sus respectivas empresas han estado en el mercado de Oriente Medio durante unos 10 años.
EDF tiene alrededor de 800 personas en la región. “Realmente comenzamos a desarrollar nuestro negocio aquí en la región hace quizás 10 años, gracias al mercado renovable IPP”, dijo Bordes.
“Desde 2015 hemos visto alrededor de 8 GW de proyectos en la región. Nuestro primer pilar consiste en desarrollar la tubería a escala de servicios públicos, y el segundo consiste en proponer soluciones para gestionar la flexibilidad del sistema y gestionar la intermitencia. Proponemos baterías, centrales hidroeléctricas de bombeo y algunas plantas de almacenamiento por bombeo”.
EDF también es un «actor importante» a la hora de ayudar al operador de la red de los Emiratos Árabes Unidos a desarrollar y hacer avanzar su red. “Estamos contribuyendo como expertos técnicos cada vez que hacen estudios de interconexión”, dijo sobre el operador de la red.
Oriente Medio es un lugar ideal para que EDF centre su negocio solar; su clima es hospitalario tanto desde el punto de vista ambiental como financiero. “Este proyecto es un laboratorio de lo que podemos hacer en el mundo real. Entonces, debido a que existen estos proyectos a gran escala, debido a que el mercado es súper competitivo, eso obliga a todos a ser súper innovadores, a trabajar en el precio… todo eso es absolutamente clave. Necesitamos estar en Medio Oriente porque este es el primer lugar donde podemos avanzar y podemos adelantarnos a lo que está sucediendo”.
Jinko Power está ocupada participando en Múltiples licitaciones para proyectos solares y de almacenamiento en Medio Oriente, según Qteishat.
“Hemos participado en casi todas las licitaciones más importantes de la región. Nuestra cartera consta de 5 proyectos en la actualidad, Arabia Saudita es otro de nuestros mercados principales, además de los Emiratos Árabes Unidos”.
A medida que Jinko Power, que no tiene ninguna relación real con el proveedor de módulos de Al Dhafra, Jinko Solar, avanza hacia la próxima década en el mercado, la compañía pretende «seguir creando una megaescala», dijo Qteishat.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.
Huasun lanzó sus paneles solares bifaciales de vidrio dual Kunlun G12 de 720 W para proyectos fotovoltaicos verticales en la Cumbre Económica Mundial del Futuro en Abu Dhabi. Los paneles presentan una eficiencia de conversión de energía del 23,2 % y una resistencia mejorada a la tensión mecánica con un marco de aleación de acero.
Fabricante chino de módulos solares de heterounión (HJT) Huasun ha lanzado una nueva serie de paneles bifaciales de doble vidrio para proyectos fotovoltaicos verticales en la Cumbre Económica Mundial del Futuro (WFES) en Abu Dhabi, Emiratos Árabes Unidos.
«Los módulos están fabricados con un marco especial de acero aleado, que garantiza una mayor resistencia al estrés mecánico», dijo un portavoz de la empresa. revistapv. «El despliegue vertical también evita la capa de nieve y la estratificación del polvo, lo que reduce los costes de mantenimiento».
La compañía afirma que el despliegue vertical permite que los módulos alcancen un factor de bifacialidad cercano al 100%.
«Gracias a su estructura bifacial simétrica natural, los paneles ofrecen más rendimiento energético desde la parte trasera en comparación con los fotovoltaicos convencionales montados en el suelo», dijo.
Los módulos, con 132 células monocristalinas HJT semicortadas, miden 2.384 mm x 1.303 mm x 33 mm y pesan 39,9 kg. Disponibles en cinco variantes con potencias de 700 W a 720 W, tienen eficiencias que oscilan entre el 22,5% y el 23,2%. El voltaje del circuito abierto varía de 49,77 V a 50,17 V y la corriente de cortocircuito varía de 17,81 A a 18,17 A.
Los paneles admiten un voltaje máximo del sistema de 1500 V, cuentan con una carcasa IP68 y tienen un coeficiente de temperatura de -0,24% por grado Celsius, con temperaturas operativas entre -40 C y 85 C. Ambos lados de los módulos bifaciales Están cubiertos por 2,0 mm de vidrio.
Los productos vienen con una garantía de salida de potencia lineal de 30 años y una garantía de producto de 15 años. La empresa garantiza una degradación del 1,0% durante el primer año y no menos del 90,3% de la producción nominal al cabo de 30 años.
Los nuevos módulos también cuentan con la tecnología de barra colectora cero (0BB) de la compañía, que mejora la adherencia, la resistencia a los puntos calientes y elimina la película portadora.
«Nuestro nuevo producto es adecuado para granjas, pastizales y energía fotovoltaica a gran escala», afirmó el portavoz.
Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.