La startup estadounidense dijo que el dispositivo de célula solar de perovskita de 30 x 30 cm presentaba su material de transporte de electrones de óxido de estaño producido en un proceso de recubrimiento con ranura de hoja a hoja.

Tintas Sofabun fabricante estadounidense de materiales de óxido metálico funcionalizados, anunció que su novedoso material de capa de transporte de electrones (ETL) de óxido de estaño (SnO2) se utilizó en un mini módulo solar de perovskita con una eficiencia del 22,2% que mide 30 x 30 cm y fabricados con procesos industrialmente compatibles.

El Tinfab de la compañía se aplicó como ETL con una herramienta de recubrimiento por ranura de hoja a hoja, según el director de operaciones de Sofab Inks, Jack Manzella, quien señaló que el socio del equipo de fabricación de perovskita era Alpha Precision Systems, una unidad con sede en EE.UU. UU. de Suzhou Precision Systems (SPS) con sede en China.

El uso de Tinfab permite un diseño sin fullereno, lo que tiene varios beneficios, según Manzella, como estabilidad, rendimiento, capacidad de fabricación y costos.

El equipo utilizó una arquitectura de celda invertida, también conocida como «alfiler«arquitectura, con iluminación de células solares a través de la capa de transporte de agujeros (HTL). «Utilizamos nuestro Tinfab, una nanopartícula de SnO₂ dispersable en disolventes ortogonales», dijo Manzella. revistapv. «La singularidad de este hito es que utilizamos una nueva arquitectura, añadiendo deposición de capa atómica SnO₂ encima de nuestro Tinfab en una arquitectura PIN», añadió.

En la demostración, la pila se depositó mediante técnicas de deposición física de vapor (PVD), revestimiento con ranura (SDC) y deposición de capa atómica (ALD). La capa de electrodo se fabricó con PVD, la capa amortiguadora con ALD, la capa de transporte de electrones (ETL) y la capa de perovskita con SDC, y la capa de transporte de huecos (HTL) con PVD.

En otras noticias de la empresa, Sofab Inks se asocia con la italiana Centro de Energía Solar Híbrida y Orgánica (CHOSE) de la Universidad Tor Vergata realizar pruebas de estabilidad de dispositivos de perovskita fabricados con Tinfab. Las 2.500h Los resultados «superaron las expectativas», según Manzella, quien señaló que Los detalles se presentarán este mes en la conferencia industrial Perovskite Connect en Berlín.

La ampliación a 30 cm x 30 cm se producirá apenas unos meses después de que la compañía informara sobre un dispositivo de células solares de triple catión con una eficiencia del 20,4% fabricado con su material, como reportado por revistapv.

El equipo de Sofab Inks está trabajando actualmente con los clientes. ubicado en australiaChina y Estados Unidos, a medida que avanza hacia la producción piloto y su propia I+D. «En los próximos meses, nuestro objetivo es lograr eficiencias similares en módulos de 60 × 60 cm y comenzar pruebas de estabilidad aceleradas. A mediano plazo, continuaremos optimizando nuestras formulaciones de tinta para mejorar el rendimiento y la escalabilidad», dijo Manzella.

Tintas Sofab es una spin-off de la Universidad de Louisville. Fue fundada en 2022 y se especializa en óxidos metálicos funcionalizados, principalmente óxido de estaño y óxido de níquel, para fabricación de gran volumen.

La Comisión Reguladora de Energía (ERC) de Filipinas ha otorgado permiso al Proyecto Solar MTerra para desarrollar sus propias instalaciones de transmisión dedicadas y conectarse a la red de Luzón. La primera fase, que abarca 2,5 GW de energía solar y 3,3 MWh de almacenamiento en baterías, deberá completarse en 2026.

ERC, el regulador energético de la filipinasha aprobado una solicitud del proyecto solar más batería en construcción más grande del mundo para desarrollar y poseer su propia red de transmisión.

El Proyecto MTerra Solar, desarrollado por Terra Solar Filipinas Inc. (TSPI), una subsidiaria de propiedad absoluta de SP New Energy Corp, es un sistema de almacenamiento de energía solar de 3,5 GW y 4,5 GWh de batería (BESS) repartido entre los municipios de Nueva Ecija y Bulacan en la isla de Luzón. El proyecto se está implementando en dos fases, la primera de las cuales consistirá en aproximadamente 2,5 GW de energía solar junto con 3,3 MWh de BESS.

La aprobación de ERC, firmada la semana pasada, permite que el proyecto se conecte a la red de Luzón a través de sus propias instalaciones de transmisión punto a punto que está construyendo TSPI. La decisión de la comisión dice que la conexión se realizará a través de una conexión de bus a la línea de transmisión existente de 500 kV Nagsaag-San José, así como a través de otra conexión de bus a la subestación planificada de San Isidro de 500 kV.

Sin embargo, niega la solicitud de TSPI de operar y mantener las instalaciones de transmisión, destacando que la responsabilidad seguirá siendo de National Grid Corp. de Filipinas (NGCP), sujeta a los cargos aplicables a TSPI.

La decisión de la comisión también describe un posible retraso en relación con la próxima subestación San Isidro, ya que NGCP aún debe presentar la aprobación para la solicitud de gasto de capital del proyecto. Según el Plan de Desarrollo de Transmisión de Filipinas, ERC espera que la subestación esté terminada entre 2031 y 2040.

Según una inspección de las instalaciones de transmisión de TSPI en septiembre, ERC dice que la construcción de las instalaciones en cuestión está en curso y se ha completado en un 90%. La decisión de la comisión determina el costo total de las instalaciones en PHP 14.200 millones (244,4 millones de dólares).

En julio, un actualizacion del proyecto reveló que el 54% de la primera fase de las obras se había completado dentro de los ocho meses posteriores a la construcción, lo que marca un avance antes de lo previsto. En ese momento, se habían instalado 778 MW de energía solar, lo que la convertía ya en la instalación solar más grande de Filipinas.

La primera fase, que también incluye una línea de transmisión de 500 kV hasta la conexión Nagsaag-San José, deberá completarse en 2026.

ArcelorMittal ha comenzado a producir sus módulos fotovoltaicos integrados en edificios Helioroof en Francia. La siderúrgica afirma que el sistema tiene como objetivo simplificar las adaptaciones energéticas para tejados comerciales e industriales.

Delaware revista pv francia

Después de cinco años de investigación y una inversión de 15 millones de euros (17,3 millones de dólares), la siderúrgica ArcelorMittal ha inaugurado una línea de producción para su sistema fotovoltaico integrado en edificios (BIPV) Helioroof en Contrisson, en la región del Gran Este de Francia.

Helioroof combina cubiertas de acero, aislamiento térmico y generación fotovoltaica en un único producto listo para instalar para cubiertas con pendientes del 7% o más. «La energía solar en tejados debe convertirse en la norma. Helioroof nos permite combinar dos mundos: el techado y el solar», afirmó Renaud Vignal, director de Helioroof en ArcelorMittal Building Solutions, en el evento del 9 de octubre.

El producto utiliza dos láminas de acero con una capa aislante entre ellas, mientras que la lámina superior integra las células solares. Los paneles hechos a medida pueden medir hasta 12 metros de longitud, con potencias energéticas desde 310 Wp hasta 2,1 kW por módulo.

La producción comienza con bobinas de acero revestido con bajo contenido de carbono X-Carb, que se desenrollan y cortan según pedido. El procesamiento se lleva a cabo en una “sala gris” dentro de la planta para proteger las células solares. Las células TOPCon M10, con 16 barras colectoras y una eficiencia del 25,4%, son suministradas por socios asiáticos no especificados y están soldadas, unidas y laminadas directamente sobre los paneles sándwich Eklipstherm.

El proceso está protegido por 15 patentes, según Vignal. La línea está ahora en ampliación, con una capacidad potencial de 200.000 metros cuadrados de Helioroof por año (equivalente a aproximadamente 80 MW), dependiendo de la demanda del mercado.

ArcelorMittal se centra en tejados residenciales, comerciales e industriales nuevos y renovados, especialmente aquellos en los que se está eliminando el amianto. Sin vidrio ni marcos de montaje, se dice que Helioroof es un 50% más liviano que los sistemas convencionales. La capa solar añade sólo 2,5 kg/m², en comparación con los 12 kg/m² de los módulos fotovoltaicos estándar. Dependiendo del espesor del aislamiento, el sistema completo pesa entre 13,5 y 17,5 kg/m².

«Esto reduce considerablemente la carga estructural del edificio», dijo Vignal.

El producto también pretende reducir el tiempo de instalación. Según se informa, solo requiere una intervención en lugar de dos, lo que reduce el tiempo de instalación en un 40 % en comparación con los sistemas convencionales.

Todas las conexiones eléctricas están ubicadas en el interior del edificio, minimizando riesgos de fugas o fallos eléctricos. El sistema cuenta con dos conectores MC4 en una bandeja portátil integrada accesible desde el interior. No requiere esquema eléctrico externo. Una sección del sitio Contrisson se ha dedicado a la formación de instaladores.

La producción comercial ha comenzado. Los primeros proyectos que utilizan Helioroof suman un total de 1.500 metros cuadrados, incluida una cervecería urbana en Lieja, Bélgica; una vivienda unifamiliar de bajo consumo energético en la región francesa de Marne; y dos naves industriales en Alto Rin y Mosa.

Al utilizar acero con bajo contenido de carbono y omitir vidrio y marcos, ArcelorMittal afirma que la huella de CO₂ de Helioroof es un 25% menor que la de los sistemas convencionales que combinan paneles sándwich y fotovoltaica en tejados. Se está llevando a cabo una evaluación del ciclo de vida completo para cuantificar las emisiones.

Desarrollada por un equipo de investigación internacional, la célula presenta una capacidad de transporte de electrones de azufre de cadmio producida mediante una novedosa estrategia de dopaje con ozono. Este tratamiento mejora la pureza y la estabilidad del material al tiempo que amplía la banda prohibida de energía del azufre de cadmio.

Un grupo de investigadores de la Universidad Normal de Fujian en China y la Universidad de Surrey en el Reino Unido han fabricado un sistema a base de carbono. trisulfuro de antimonio (Sb2S3) célula solar que alcanzó una eficiencia de conversión de energía récord del 9,0%.

“Establecimos un nuevo punto de referencia para esta arquitectura de dispositivo estable y de bajo costo”, dijo el autor principal de la investigación, Guilin Chen. revistapvseñalando que el resultado representa un récord mundial para este tipo de células.

Aunque los dispositivos de Sb₂S₃ tienen un límite de eficiencia teórica del 26% en condiciones radiativas, los defectos en el material absorbente suelen limitar su rendimiento alrededor del 8%. “Nuestro trabajo proporciona una estrategia de ingeniería de capa de transporte de electrones (ETL) sencilla, escalable y multifuncional que no solo rompe un cuello de botella en el rendimiento sino que también mejora significativamente la estabilidad del dispositivo, lo que presenta un paso importante. hacia Sb comercialmente viable y de bajo costo.2S3 energía fotovoltaica”, explicó Chen.

Las celdas de Sb₂S₃ generalmente se construyen con un sulfuro de cadmio (CdS) ETL, pero el dopaje y el espesor de la capa a menudo afectan tanto el voltaje de circuito abierto como la corriente de cortocircuito.

A través del tratamiento con ozono in situ (IOT), desarrollamos un método de un solo paso para el dopaje con oxígeno de la capa de transporte de electrones (ETL) de CdS durante el proceso estándar de deposición en baño químico (CBD), eliminando la necesidad de tratamientos complejos, de alta temperatura o posteriores a la deposición.”, explicó Chen.

Se dice que el enfoque propuesto suprime el Sb típico.2Vaya3 impurezas, ya que inducen una transición de fase hexagonal a cúbica en CdS, que termodinámicamente desfavorece el crecimiento epitaxial del perjudicial Sb2Vaya3 fase de impureza durante la deposición del absorbente, lo que lleva a un absorbente más puro y de mayor calidad.

Además, supuestamente crea una capa de Cd graduada y rica en oxígeno en la interfaz enterrada entre la propia capa de CdS y el sustrato hecho de vidrio recubierto con óxido de estaño dopado con flúor (FTO), lo que fortalece la adhesión y reduce los centros de recombinación interfacial.

«IOT promueve una distribución gradiente de oxígeno dentro de CdS al aprovechar la competencia entre las especies de oxígeno y azufre. Esto amplía la banda prohibida efectiva, reduciendo la pérdida de luz parásita», dijeron los científicos, señalando que el La banda prohibida de CdS se incrementó de 2,19 eV a 2,26 eV, lo que redujo la absorción parásita de luz de longitud de onda corta y aumentó la fotocorriente.

La celda se construyó con el sustrato de vidrio FTO, el CdS ETL, el Sb2Vaya3 absorbente, una capa de azufre de plomo (Pbs) y un contacto de carbono.

Probado en condiciones de iluminación estándar, el dispositivo logró una eficiencia del 9,0 %, un voltaje de circuito abierto de 0,4908 V, una densidad de corriente de cortocircuito de 26,88 mA/cm2 y un factor de llenado del 68,19 %.

«La celda demostró una estabilidad notable sin encapsulación, manteniendo el rendimiento durante 8 meses en el aire ambiente y conservando el 70% de su eficiencia inicial después de 1000 horas de duras pruebas de calor húmedo, superando significativamente a los dispositivos convencionales. basado en Spiro-OMeTAD/Au”, dijo Chen.

La celda fue descrita en “Récord de eficiencia certificada del 9 % para células solares Sb2 (S,Se) 3 a base de carbono habilitadas por el tratamiento de oxidación en gradiente de la capa de transporte de electrones CdS”, publicado en Materiales funcionales avanzados.

«Nuestro estudio proporciona evidencia experimental completa, utilizando Raman, transmitancia y perfiles de profundidad XPS, de que el IOT crea un gradiente longitudinal de oxígeno-azufre dentro de la película de CdS, con la mayor concentración de oxígeno en la interfaz crítica FTO/CdS», conclusiones Chen. «A través de una caracterización y modelado avanzados, el estudio demuestra cuantitativamente que el dopaje óptimo con oxígeno en la interfaz fortalece significativamente la energía de adhesión entre CdS y FTO, lo que conduce a un transporte superior del portador y una reducción de la recombinación».

En julio de 2024, otro equipo de investigación internacional esbozó un nuevo2S3 diseño de células solares que, según se informa, puede resultar en una eficiencia un 30% mayor en comparación con el Sb existente2S3 Conceptos de células solares.

Chipre sustituirá sus actuales sistemas de facturación y medición neta por un nuevo modelo de autoconsumo basado en el mercado a partir de enero de 2026, a medida que el sector eléctrico de la isla se abra a la competencia.

El Ministerio de Energía, Comercio e Industria de Chipre ha confirmado que los actuales esquemas de medición neta y facturación neta del país finalizarán el 31 de diciembre. Un nuevo marco de autoconsumo, diseñado por la Autoridad Reguladora de Energía de Chipre (CERA), entrará en vigor a partir del 1 de enero de 2026.

La medición neta ahora se aplica a los sistemas fotovoltaicos residenciales y acredita la generación solar a la tarifa minorista, mientras que la facturación neta cubre los sistemas comerciales e industriales acreditados a la tarifa mayorista.

Estos programas han impulsado una adopción significativa de la energía solar en tejados, lo que representa gran parte de la capacidad fotovoltaica instalada en Chipre. Sólo en 2024, el país agregó 159 MW de nueva capacidad solar, de los cuales 100 MW provinieron de sistemas de autoconsumo.

El ministerio dijo que el programa «Fotovoltaica para todos» en curso programa de subsidio – lanzado en enero de 2024 con 30 millones de euros (34,7 millones de dólares) de financiación para 2024-25 – continuará según lo previsto, proporcionando préstamos para la compra e instalación de sistemas fotovoltaicos residenciales.

Según el nuevo régimen, los sistemas sin un contrato de facturación o medición neta firmado para fines de 2025, así como aquellos cuyos contratos actuales expiren después del 1 de enero, pasarán al marco actualizado.

CERA describió tres opciones para los autoconsumidores: firmar un acuerdo bilateral con un minorista de energía, unirse a un agregador que vende el excedente de generación al mercado o optar por no exportar el exceso de energía a la red. La duración y las condiciones de los contratos bilaterales se determinarán entre el consumidor y el minorista.

La reforma se produce tras el lanzamiento de un mercado eléctrico totalmente liberalizado en Chipre el 1 de octubre, poniendo fin al papel exclusivo de la empresa estatal EAC en la medición neta y la facturación.

El anuncio de CERA proporcionó alivio a los instaladores de energía solar que no estaban seguros de qué reemplazaría los sistemas existentes.

«El gobierno ha hecho un esfuerzo genuino para ayudar a los hogares a acceder a electricidad más barata», afirmó el Dr. Andreas Procopiou, experto en energía y fundador de ChipreGrid. «Pero, dados los desafíos únicos de Chipre (sin almacenamiento en baterías, sin interconexiones con otras redes y con una fuerte dependencia de la generación diésel), esta es actualmente la única manera práctica de bajar los precios. Aún así, necesitamos urgentemente complementar estas medidas con soluciones de almacenamiento de energía para fortalecer la autosuficiencia de los consumidores y la resiliencia general del sistema eléctrico».

Procopiou dijo que el nuevo marco del mercado sigue siendo incierto y que es poco probable que los agregadores integren sus operaciones con esquemas de autoconsumo en el corto plazo. «Será un verdadero desafío para ellos. Chipre es un mercado muy pequeño, los agregadores dependen de la escala y la logística de gestionar y agregar millas de unidades pequeñas es extremadamente compleja».

Investigadores en China han desarrollado una técnica de monitoreo de polvo que se basa únicamente en los recursos de hardware existentes de los inversores, sin requerir sensores ni datos meteorológicos adicionales. Las pruebas realizadas en paneles fotovoltaicos reales en tejados demostraron una precisión superior al 96 %”.

Investigadores en China han desarrollado una novedosa técnica de monitoreo de acumulación de polvo localizada para conjuntos fotovoltaicos distribuidos que se basa únicamente en el inversor de hardware existente, eliminando la necesidad de dispositivos adicionales o conectividad a Internet.

«Para los sistemas fotovoltaicos distribuidos con ingresos de generación de energía relativamente modestos, la dependencia de dispositivos adicionales o servicios externos inevitablemente aumenta la inversión inicial y extiende los períodos de recuperación», explicó el equipo. «Además, estos métodos a menudo implican procedimientos complejos que son difíciles de implementar para los no especialistas. Para abordar la necesidad de un monitoreo del polvo práctico y rentable, este estudio propone un enfoque de monitoreo localizado».

El nuevo método aprovecha el funcionamiento de Múltiples paneles dentro de la misma área local, lo que permite al sistema distinguir consistentemente los estados de acumulación de polvo en función de los datos operativos. En esta configuración, los inversores recopilan y analizan datos relevantes, que luego se comprimen utilizando un esquema de codificación diferencial (DE) mejorado aplicado al voltaje, la corriente y sus duraciones.

Posteriormente, un modelo de inteligencia artificial de unidad recurrente cerrada (GRU) extrae características e identifica patrones, mientras que un algoritmo K-means semisupervisado agrupa datos en grupos limpios y sucios utilizando ejemplos etiquetados. Los resultados diarios se agregan estadísticamente y, cuando surgen patrones consistentes, el sistema emite una advertencia. Los datos recopilados antes y después de cada operación de limpieza se tratan como instancias recién etiquetadas, actualizando el conjunto de muestras para un seguimiento futuro.

Para evaluar el sistema, los investigadores probaron tres grupos de paneles fotovoltaicos.: Grupo 1 con paneles de silicio policristalino de 230 W, siete años de servicio, topología 1×13 y potencia total 2,9 kW; Grupo 2 con paneles de silicio policristalino de 275 W, ocho años de servicio, topología 2×9 y potencia total 4,9 kW; y el Grupo 3 con paneles de silicio monocristalino de 135 W, dos años de servicio, topología 2×6 y una potencia total de 1,6 kW.

Todos los inversores eran del tipo puente completo trifásico con una potencia nominal de 10 kW. Los datos se recopilaron durante 12 días en condiciones soleadas, nubladas y nubladas, y cada grupo fotovoltaico se probó en cuatro escenarios diferentes de cobertura de polvo simulados utilizando películas plásticas con transmitancias del 85 %, 72 % y 61 %. De los 302.400 puntos de datos recopilados, 4.139 se conservaron después de la evaluación, 3.139 se utilizaron para capacitación y 1.000 se reservaron para pruebas.

El sistema demostró una precisión del 96,5 %, ligeramente inferior al 98 % de precisión de los enfoques colaborativos de referencia en la nube.

«El enfoque propuesto logra un bajo costo, una baja complejidad operativa y una alta precisión en el monitoreo de la acumulación de polvo, reduciendo así los gastos de mantenimiento y gestión de los sistemas fotovoltaicos distribuidos y mejorando la rentabilidad. del propietario”, concluyó el equipo.

El nuevo enfoque se describe en “Monitoreo de acumulación de polvo localizado para paneles fotovoltaicos distribuidos”, publicado en Energía solar. El equipo de investigación estaba compuesto por científicos de China. Universidad de Ciencia y Tecnología de Shandong y Universidad de Shandong.

SolarPower Europe ha suspendido los esfuerzos para excluir a Huawei, iniciados en mayo en medio de una investigación sobre sobornos de la Unión Europea. A pesar de seguir siendo miembro de SolarPower Europe, la empresa china acordó no participar en las actividades de la asociación debido a las restricciones impuestas por la UE.

El organismo comercial europeo SolarPower Europe ha suspendido procedimientos de exclusión lanzado en mayo contra el fabricante chino de inversores y baterías Huawei.

En ese momento, la asociación dijo que la medida se produjo tras una decisión de la Comisión Europea de restringir las reuniones con grupos industriales que incluyen a Huawei entre sus miembros.

SolarPower Europe dijo que Huawei no ha sido excluido después de aceptar limitar su participación en ciertas actividades de la asociación.

«Huawei se ha comprometido a no participar activamente en las actividades de SolarPower Europe para garantizar que SolarPower Europe mantenga un acceso irrestricto a las instituciones de la UE y otras partes interesadas y pueda llevar a cabo sus actividades sin limitaciones», dijo un portavoz de SolarPower Europe. revistapv. «Esto incluye no participar en los flujos de trabajo de SolarPower Europe ni en el Comité de Defensa».

La Comisión Europea decidió cortar el contacto con las asociaciones comerciales que representan los intereses de Huawei, citando una investigación de corrupción en curso sobre la empresa.

«SolarPower Europe está totalmente comprometida a mantener los más altos estándares éticos en todas nuestras actividades. Condenamos estrictamente cualquier forma de soborno o corrupción tal como se consagra en los estatutos de SolarPower Europe.”, dijo el portavoz de la asociación.

El proveedor chino de inversores fotovoltaicos ha negado anteriormente haber accionado mal, indicando que mantiene “un enfoque de tolerancia cero hacia el soborno y la corrupción”.

Investigadores en China han construido un sistema de recolección de agua atmosférica basado en sorción de ciclo rápido fuera de la red. Alimentado por tres módulos fotovoltaicos, el sistema se probó con cuatro métodos de condensación en interiores y exteriores.

Un grupo de científicos de China. Universidad Normal de Yunnan y la Universidad Provincial de Yunnan ha desarrollado un sistema de recolección de agua atmosférica (SAWH) basado en sorción de ciclo rápido impulsado por energía fotovoltaica.

«Para mejorar la practicidad y escalabilidad de nuestro sistema anterior, se propone un innovador sistema SAWH de ciclo rápido impulsado por energía fotovoltaica (PV) para la recolección sostenible de agua fuera de la red», explicó el grupo. «Se diseñó un sistema de suministro de energía fotovoltaica para satisfacer los requisitos energéticos de la recolección continua de agua: durante las horas del día, los paneles fotovoltaicos alimentan los componentes eléctricos directamente, con el exceso de energía almacenado en las baterías; por la noche o con luz solar insuficiente, las baterías se descargan para mantener el funcionamiento».

SAWH (recolección de agua asistida por sorción) es una tecnología que utiliza materiales hidrófilos e higroscópicos para capturar la humedad atmosférica y recuperar agua mediante desorción y condensación.

En el núcleo de la unidad SAWH hay dos piezas de fieltro de fibra de carbón activado comercial (ACFF) apiladas entre electrodos y sujetas para formar un único módulo adsorbente. Este módulo se coloca dentro de una estructura cerrada que consta de un lecho de adsorción en la parte inferior y un módulo de condensación en la parte superior. El ACFF en la parte inferior captura la humedad del aire ambiente y sirve como resistencia para generar calor para la liberación de vapor, mientras que la sección superior enfría y condensa el vapor en agua líquida.

La carcasa SAWH funciona con dos paneles fotovoltaicos de 300 W conectados en paralelo y dos baterías de 12 V/200 Ah conectadas en serie. También está integrado un sistema auxiliar, compuesto por un panel fotovoltaico de 200 W y una batería de 12 V/80 Ah, que funciona en tres de los cuatro modos de condensación. En el modo de refrigeración por agua, una bomba hace agua circular; en la refrigeración asistida por ventilador, se alimenta un ventilador; y en refrigeración de semiconductores, se activa un módulo semiconductor. El sistema auxiliar no es necesario en el cuarto modo, convección natural.

El sistema se probó tanto en laboratorio como en entornos exteriores utilizando los cuatro modos de condensación. También se evaluó bajo tres horarios de adsorción: Modelo 1 (9 h, 3 h, 3 h, 3 h), Modelo 2 (6 h, 3 h, 6 h, 3 h) y Modelo 3 (cuatro intervalos iguales de 4,5 h). Las pruebas al aire libre se llevaron a cabo en Kunming, en el sur de China, entre enero y marzo de 2025.

«Los resultados mostraron que el modo de condensación de refrigeración por agua asistido por ventilador era la opción más eficiente desde el punto de vista energético, manteniendo una producción diaria de agua (DWP) de 0,96 kg de agua/kg ACFF/día y un consumo de energía específico (SEC) de 2,59 kW·h/kg de agua”, informó el equipo. «El modo de igual duración de adsorción (4,5 h × 4) exhibió el mejor rendimiento general, logrando un DWP de 0,50 kg de agua/kg ACFF/día y un SEC de 4,86 ​​​​kW·h/kg de agua. Este modo aumentó la eficiencia de generación de energía fotovoltaica al 14,2 %».

Según la estrategia optimizada para seis días de funcionamiento en exteriores, los paneles fotovoltaicos proporcionarán energía según demanda con una eficiencia del 15% al ​​20%, y la eficiencia del suministro de energía alcanzó aproximadamente el 90%. «Además, el sistema logró un tiempo de recuperación de la energía de 6,72 años y una reducción de las emisiones de CO₂ durante el ciclo de vida de 35,84 toneladas», concluyó el grupo.

Los científicos presentaron el sistema en el estudio “Un sistema de sorción de ciclo rápido impulsado por energía fotovoltaica para la recolección sostenible de agua atmosférica fuera de la red.”, publicado en Conversión y gestión de energía.

Mauritania ha firmado su primer contrato de productor de energía independiente, que cubre un proyecto híbrido de viento solar de 60 MW. Níger ha firmado un acuerdo de financiación con el Banco Africano de Desarrollo que planea desarrollar 240 MW de energía solar para fines de la década.

Mauritania ha firmado un acuerdo de 300 millones de dólares con el desarrollador IWA Green Energy con sede en Dubai para una central eléctrica de viento solar híbrida de 60 MW.

El acuerdo es el primer Mauritania ha firmado con un productor de energía independiente. También es uno de los primeros proyectos que se desarrollaron bajo el desierto al poderProtocolo conjunto de productor de energía independiente (DTP), un marco regional con el objetivo de atraer capital privado en 11 países del Sahel respaldados por el Banco Africano de Desarrollo (AFDB).

La instalación debe llegar a Stream en septiembre del próximo año. Según una declaración publicada por el Ministerio de Energía y Petróleo de Mauritania, se ha firmado un acuerdo de compra de energía de 15 años con la compañía de electricidad de Mauritania Somelec.

IWA Green Energy será responsable de todos los aspectos financieros y técnicos del proyecto de $ 300 millones, agrega el Ministerio.

AFDB agregó que el proyecto es parte de un cambio de continente en el que los gobiernos africanos están recurriendo a productores de energía independientes para promover inversiones privadas y escalar proyectos renovables para reducir la presión sobre las finanzas públicas.

Mientras tanto, Níger y AfDB ha celebrado un acuerdo de financiación de $ 144,7 millones para mejorar el acceso a la energía y la competitividad del sector privado en el país bajo la primera fase de la Programa de Gobierno del Sector de la Energía y Apoyo Competitivo (PAGSEC).

AFDB dice que la financiación Aumente el acceso a la electricidad en Níger del 22.5% al ​​​​30% para 2026. Un componente clave de este trabajo desarrollará capacidad de energía renovable, con planes de 240 MW de energía solar para 2030, incluidos 50 MW para diciembre de 2026.

Otro trabajo bajo el programa incluye una política energética nacional actualizada para crear entornos más favorables para la participación del sector privado en desarrollos minigrides en áreas rurales, dice el banco.

«Con este programa, Níger está listo para capitalizar su vasto potencial de energía renovable mientras construye sistemas de gobierno que respalden el desarrollo inclusivo y sostenible», agrega la declaración de ADB.

Me paso, un informe De la Agencia Internacional de Energía Renovable (Irena) destacó que las fuentes de energía con energía solar podrían ayudar a reducir los costos de energía y aportar más resistencia a la cadena de valor de pesca artesanal de Mauritania.

La Primera Edició de Solar Solutions Torino Atrajo A 35 Expositores Y 930 Visitantes, Subrayando La Creciente participante Regional Entre la Academia y la Industria en el Sector Solar de Italia.

Delaware Revista Fotovoltaica Italia

El Evalo de Soluciones Solares de Dos Días Tuvo Lugar en Turín, en el Norte de Italia, LA Semana Pasada. Patrocado por el Grupo de Expertos Italiano Club Kyoto y Asociación de Energía Elettricità Futura, la ediciónica inaugural Contó con 35 Expositores, 26 Oradores en el érea del Seminario y 10 en El -El -El -de Lanzamiento.

Organizadores Dijeron Revista Fotovoltaica Italiaque participó con dos presentaciones juntas con italia solare, que el evento atrajo a 930 visitantes.

«Una Pequeña Feria, Pero Cerca de Casa. Nos Complació Estar Allí. Esperamos que a Lo Largo de Los Años Pueda Crecer en los Expositores y Volverse Cada Vez Más Prestigioso», DiJo Luca Perrone, Propietiaria de STP Protetti con sede en Piedmont, en Linkedin.

Las Fuentes que Solicitaron El Anonimato Acogieron Con Beneplácito la Colaboraciónis Con la Universidad Politécnica de Turín, Que Organizó Siete de Los 20 Seminarios Celebros Entre El Miércoles y El Jueves.

Investigadores y Profesores de la Universidad Politécnica También Expresaron interés en una colaboracia más Cercana Con la Industria. «Usarnos», Dijo Silvia Bodoardo, Profesora completa de la Universidad Politécnica de Turín y Asesora científica de la Asociacia Europea de Asociacia Europea (Bepa).

Las Mismas Fuentes, Dos Expertos de la Industria, Dijeron Que la Feria Podría Beneficiaria de la Colaboracia Con otros sectores para ampliar su audiencia potencial.

Soluciones solares dijo en un comunicado de prensa que el evento de turina Marca el comienzo de un Esfuerzo a más Largo Plazo, con la Própica Ediciónica Programada para el 28 al 29 de octubre de 2026, en lingottto Fiere. La Organización de la Organización Agregó que formato Continuará Internacional Continuará con los Próxos Eventos en Kortrijk, Bélgica, del 8 al 9 de octubre; Düsseldorf, Alemania, del 3 al 4 de Diciembre; Y EN 2026 Con Paradas en Leipzig, Amsterdam, Viena y Bremen.