El Grupo APA ha inaugurado oficialmente un proyecto solar, diseñado para soportar velocidades de viento sostenidas de casi 300 km/h, junto con un sistema de almacenamiento de energía de batería ubicado en la región de Pilbara, en Australia Occidental.

Delaware revistapv

La empresa australiana de gas y electricidad APA Group ha revelado que la construcción de su parque solar y proyecto de baterías Port Hedland en la región de Pilbara, en Australia Occidental, ya está completa y la puesta en marcha está en marcha. Se espera que las operaciones comerciales comiencen en enero de 2025.

El proyecto de Port Hedland incluye un parque solar de 45 MW junto con un sistema de almacenamiento de energía en batería de 35 MW/36,7 MWh. Están conectados a la actual central eléctrica de gas de Port Hedland de APA ya la red del Sistema Interconectado del Noroeste (NWIS) y proporcionarán electricidad a las instalaciones portuarias de mineral de hierro de BHP.

APA, con sede en Sydney, dijo que dada la proximidad del sitio del proyecto a la costa noroeste de Australia, el parque solar ha sido diseñado para hacer frente a condiciones ciclónicas severas y es capaz de soportar velocidades sostenidas de viento de 288 km/h. .

“Si bien la instalación de energía solar en las regiones del interior de Pilbara es relativamente sencilla, el despliegue solar costero ha permanecido estancado debido a la dificultad para diseñar infraestructura de energía renovable capaz de soportar las velocidades extremas del viento asociadas con los ciclones, que prevalecen en la región. ”, dijo la empresa.

Se utilizaron unos 11.000 km de acero estructural para 32.000 pilotos.

» data-medium-file=»https://www.pv-magazine-australia.com/wp-content/uploads/sites/9/2024/12/port-hedland-solar-steel-600×450.jpg» data-large-file=»https://www.pv-magazine-australia.com/wp-content/uploads/sites/9/2024/12/port-hedland-solar-steel-1200×900.jpg» tabindex=» 0″ rol=»botón» src=»https://www.pv-magazine-australia.com/wp-content/uploads/sites/9/2024/12/port-hedland-solar-steel-600×450.jpg» alt width=»600″ alto =»450″>

Imagen: Grupo APA

APA dijo que el parque solar, construido por Monford Group, incluye 32.000 pilotos de acero que han sido clavados a 2,2 metros en el suelo, secciones transversales de acero de hasta 4 mm de espesor y 119.056 paneles solares colocados en una inclinación de 10 grados para reducir las fuerzas del viento. . Dijo que la estructura está asegurada con 3,2 millones de pernos, y que «el diseño y el equipo se calcularon y probaron rigurosamente para garantizar que sea resistente a los ciclones».

La batería es capaz de responder a la intermitencia única de la energía renovable en Pilbara y, en particular, a los eventos de nubes, que pueden hacer que la producción solar caiga del 100% a menos del 20% en menos de dos minutos.

«Este proyecto demuestra cómo la generación alimentada por energía solar, baterías y gas se puede unir para lograr una transición exitosa de las operaciones mineras remotas», dijo el director ejecutivo y director general de APA, Adam Watson.

El presidente de BHP WA Iron Ore Asset, Tim Day, dijo que se espera que el parque solar satisfaga la mayor parte de las necesidades energéticas diurnas de las enormes instalaciones portuarias de la minera en Port Hedland. Las necesidades de energía restantes se cubrirán a través de la planta de gas existente de BESS y APA.

«este acuerdo de compra de energía «Es un paso adelante en el camino global de BHP hacia la descarbonización, y también desempeñará un papel importante en el futuro de la energía renovable de Pilbara», dijo. «Desde electrificar equipos de minería y cambiar a fuentes de energía renovables como ésta, hasta asociarnos con la industria naviera y las siderúrgicas para ayudars a reducir sus emisiones, todo se trata de hacer nuestra parte en el esfuerzo de descarbonización global».

El proyecto de baterías y energía solar de Port Hedland ayudará a impulsar las operaciones portuarias de BHP.

» data-medium-file=»https://www.pv-magazine-australia.com/wp-content/uploads/sites/9/2024/12/port-hedland-battery-600×337.jpg» data-large-file=»https://www.pv-magazine-australia.com/wp-content/uploads/sites/9/2024/12/port-hedland-battery-1200×674.jpg»>

Imagen: Grupo APA

Descarbonizar las operaciones remotas y de uso intensivo de energía del sector de recursos de Australia será una tarea importante, y Watson estima que lograr esa hazaña solo en Pilbara costará alrededor de 15 mil millones de dólares australianos (9,72 mil millones de dólares).

Si bien reconoció el alcance de la tarea por delante, Watson dijo que el proyecto de Port Hedland demuestra la capacidad de desplazar la generación térmica con generación solar a escala de servicios públicos, manteniendo al mismo tiempo la competitividad de costos y la seguridad del suministro en lugares remotos.

«Es una clara demostración de nuestra capacidad para apoyar a los clientes con una infraestructura energética confiable, asequible y con bajas emisiones», afirmó.

El proyecto solar y de baterías de Port Hedland es el primer proyecto implementado por APA en Australia Occidental desde su Compra por 1.700 millones de dólares australianos de los activos de Alinta Energy en Pilbara.

Entre los próximos proyectos potenciales de APA se encuentran una expansión del proyecto de baterías y energía solar de Port Hedland y una extensión de 30 MW al granja solar chichester. La compañía también está examinando la construcción de infraestructura de transmisión de electricidad para conectar Port Hedland con las minas alrededor de Newman como parte de una estrategia para electrificar la región.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

PowerChina ha revelado planos para un proyecto piloto fotovoltaico marino de 300 MW en el mar de Bohai, utilizando paneles solares avanzados diseñados para soportar condiciones marinas extremas.

Imagen: revista pv

PoderChina ha revelado planos para un proyecto piloto de energía solar marina de 300 MW en el mar de Bohai, al sureste del condado de Changli, provincia de Hebei. El proyecto, ubicado a unos 7,3 kilómetros de la costa en el mar de Bohai, cubrirá 957 metros cuadrados con profundidades de agua de 6 a 12 metros. Utilizará módulos bifaciales de doble vidrio de heterounión tipo n (HJT) con una potencia mínima de 715 Wp y celdas de 210 mm, con el objetivo de alcanzar una capacidad de compra de 339,68 MWp. Los módulos de alta eficiencia están construidos para soportar duras condiciones marinas como altas temperaturas, niebla salina y humedad.

Largo ha firmado una asociación estratégica con Raystech, el mayor distribuidor fotovoltaico de Australia. La colaboración se centrará en promover productos solares de alto valor, en particular módulos de tecnología de contacto posterior, en el mercado australiano. Redes de ópera Raystech en Australia y Nueva Zelanda.

Shanghái Tianyang dijo que pospuso la finalización de dos proyectos de producción de películas fotovoltaicas en Kunshan y Hai’an de diciembre de 2024 a junio de 2025. La compañía citó los desafíos en el sector solar, incluidas las tendencias de principios de 2024 de reducciones de precios y crecimiento de volumen, el aumento de pérdidas entre los fabricantes. y una expansión de la capacidad más lenta. Estas condiciones del mercado han reducido la urgencia de nueva capacidad de producción nacional.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Aritra Ghosh, académica de la Universidad de Exeter, cuenta revistapv Se requiere un enfoque multidisciplinario para desbloquear todo el potencial de la agrovoltaica. Al analizar un nuevo artículo que compara los sistemas agrovoltaicos estáticos y de seguimiento en el Reino Unido, el investigador sostiene que es necesaria una mejor comprensión de los microclimas bajo los módulos y cómo la energía fotovoltaica afecta la bioquímica de los cultivos.

Según la investigadora británica Aritra Ghosh, se necesita una mejor comprensión de los microclimas y los efectos de la energía fotovoltaica aérea en la biología de los cultivos para mejorar la eficiencia del uso de la tierra en las instalaciones agrovoltaicas.

hablando con revistapv Sobre la publicación de un nuevo artículo que compara los efectos de las instalaciones agrovoltaicas estáticas y montadas en rastreadores, Ghosh dijo que los académicos especializados en fotovoltaica todavía tienen lagunas de conocimiento en lo que respeta a la ciencia de los cultivos, “y la gente de los cultivos no entienden el aspecto fotovoltaico. Necesitamos más tiempo para desarrollarnos, creo que eso es cierto para Alemania, Francia, Europa y cualquier lugar. No tienen los datos”.

Ghosh es profesor de la Universidad de Exeter y autor de «Evaluación de seguimiento de sistemas agrivoltaicos basados ​​en energía solar fotovoltaica bifacial en todo el Reino Unido”, publicado en energia solar. El estudio utiliza herramientas de simulación para investigar cómo se puede integrar un sistema fotovoltaico en granjas que cultivan patatas en el Reino Unido. En el documento se incluyen ubicaciones que cubren las principales regiones del Reino Unido, en el que los investigadores utilizaron el software de diseño PVsyst en combinación con un sistema de apoyo a la toma de decisiones para la transferencia de agrotecnología (DSSAT) para producir datos de energía y producción agrícola para instalaciones hipotéticas.

Las simulaciones encontraron disparidades significativas en la irradiancia solar, la temperatura y las precipitaciones en los lugares estudiados, lo que influyó en la electricidad y la producción agrícola. A pesar de esto, surgieron algunas tendencias. Los módulos fotovoltaicos bifaciales montados sobre sistemas de seguimiento son el mejor tipo de instalación para la producción de energía solar, según el modelo. El estudio encontró que los paneles bifaciales de 440 W montados en un seguidor generaban un promedio de 24,6% más energía que los sistemas bifaciales estáticos.

Sin embargo, los rastreadores también tuvieron un efecto marcado en el rendimiento de los cultivos. Una instalación compuesta por paneles monofaciales en una instalación de seguimiento modelada para Birmingham dio como resultado rendimientos de cultivos tan bajos como 65,57% en comparación con una instalación bifacial estática con la misma cobertura de suelo.

Las instalaciones agrovoltaicas bifaciales estáticas fueron las instalaciones más positivas para el rendimiento de los cultivos. En términos de calificación de eficiencia del suelo (LER), las instalaciones estáticas también resultaron ser las más eficientes para extraer valor de un área, aunque LER no es un instrumento perfecto para la toma de decisiones en materia de agrovoltaica, según Ghosh. En cambio, el investigador afirmó que se requiere una comprensión más completa de la relación entre las instalaciones fotovoltaicas y el rendimiento de los cultivos para crear una solución que pueda informar a los agricultores qué funcionará mejor en sus tierras.

«Se trata de dos ciencias diferentes», dijo Ghosh. “Tenemos que entender cómo reaccionan los cultivos con la naturaleza porque eso afecta el rendimiento fotovoltaico. Según tengo entendido, algunos cultivos dan como resultado una temperatura ambiente más refrescante y otros no. Esto tendrá un impacto adicional en la generación de energía porque la energía fotovoltaica tiene un gradiente de temperatura. Por eso necesitamos una mayor interacción entre estas dos ciencias. No es tan simple, pero sí es factible”.

Ghosh agregó que a medida que continúe la investigación, será posible desarrollar una aplicación o software para brindar a los agricultores recomendaciones adaptadas a su localidad.

“Tal vez después de unos años podamos producir algún tipo de aplicación donde los agricultores no tengan que entender toda la ciencia, sino que necesiten conocer los elementos clave y la ciencia se realizará en el fondo. Supongamos que queremos cultivar patatas, pondremos algunos elementos básicos y eso les dirá cuál será la mejor solución. Todavía necesitamos más tiempo para eso, pero no se trata sólo de la irradiación solar, hay muchos factores aquí”, afirmó.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Una serie de estudios longitudinales de tres sitios de polinizadores solares en Minnesota han demostrado evidencia de praderas nativas que crecen bajo paneles solares, proporcionando beneficios para el suelo y hábitat para la vida silvestre y los polinizadores.

Investigación dirigida por el Departamento de Energía de EE.UU. Laboratorio Nacional de Energías Renovables (NREL) ha recopilado datos sobre las interacciones entre el hábitat, los polinizadores, el suelo y la producción de energía solar en tres proyectos solares a gran escala en Minnesota.

El equipo de Prácticas solares innovadoras integradas con economías y ecosistemas rurales (InSPIRE) del NREL ha realizado investigaciones en los tres sitios durante los últimos seis años, en lo que el laboratorio dice que es la evaluación más completa y de mayor duración de las interacciones entre la energía solar, el suelo, el hábitat y polinizadores hasta la fecha.

Los hallazgos se presentan en tres estudios, Beneficios ambientales colaterales del mantenimiento de la vegetación nativa con la infraestructura solar fotovoltaica”, disponible en El futuro de la Tierra, Si lo construyes, ¿vendrán? Respuestas de la comunidad de insectos al establecimiento de hábitat en instalaciones de energía solar en Minnesota, EE.UU. UU.”, disponible en Cartas de investigación ambiental y «Pequeña pradera debajo del panel: prueba del establecimiento de una mezcla de semillas en el hábitat de polinizadores nativos en tres sitios solares a escala de servicios públicos en Minnesota”, disponible en Comunicaciones de investigación ambiental.

Las tres instalaciones solares estudiadas en los artículos son los sitios solares de Chisago, Atwater y Eastwood, que forman parte del proyecto solar Aurora, propiedad de Enel Green Power y ubicada en el área de Minneapolis y sus alrededores. NREL dice que estos sitios de polinizadores solares son los primeros proyectos solares comerciales a escala de servicios públicos en los EE.UU. UU. que presentan una investigación exhaustiva sobre ecovoltaica.

La investigación encontró que las actividades de restauración de las praderas pueden ocurrir debajo de los paneles solares. Una vez que se descubrió la vegetación de la pradera, se observó que los polinizadores utilizaban el sitio tanto como tierras dedicadas a la conservación, y la evidencia apunta hacia una mayor abundancia y diversidad tanto de la vegetación como de los polinizadores bajo los paneles solares.

Después de la construcción del parque solar, se necesitaron de tres a cuatro años para que la vegetación de la pradera se estableciera por completo, y algunas especies no aparecieron hasta los años cinco y seis.

Se descubrió que plantar hábitat de polinizadores y vegetación nativa mitiga parte del daño ambiental causado al suelo y al hábitat cuando se construyen instalaciones solares y, eventualmente, puede proteger el suelo de la erosión futura, agrega la investigación, pero también advierte que puede llevar mucho tiempo restaurarlo. suelo después del daño causado por la producción intensiva de maíz y soja. NREL dice que el impacto general de las actividades de restauración del suelo en estos sitios no estará claro en los próximos años.

Los investigadores también observaron poco o ningún impacto en la generación anual de electricidad en todos los sitios. Si bien se registró que los hábitats nativos disminuyeron las temperaturas de los módulos fotovoltaicos en comparación con el suelo base, no se encontró que esto aumentara la producción de electricidad.

NREL dice que este hallazgo contradice los estudios realizados en otras regiones, lo que sugiere que la interacción microclimática entre los paneles fotovoltaicos, el suelo y la vegetación no es consistente en los diferentes paisajes y climas. «Uno de los resultados más importantes de esta investigación es que necesitamos estudiar más sitios», dijo el investigador de agrovoltaica del NREL, Chong Seok Choi. “Por ejemplo, el clima específico del sitio (la cantidad de humedad que hay en el aire, por ejemplo) puede afectar si el enfriamiento que observamos en el hábitat nativo puede conducir a una mayor eficiencia fotovoltaica. Todavía queda mucho trabajo por hacer”.

Los tres estudios fueron financiados por la Oficina de Tecnologías de Energía Solar del Departamento de Energía de EE.UU. UU. y realizados por NREL y Laboratorio Nacional de Argonnejunto con socios de investigación de la Universidad de Minnesota y la Universidad de Temple y profesionales de MNL, anteriormente Minnesota Native Landscapes.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Gabón ha inaugurado su primera planta solar a escala comercial, la más grande de África Central. El promotor Solen SA Gabón ha dicho que pretende ampliar la capacidad del proyecto Ayémé a 30 MW para alimentar a más de 300.000 hogares.

Imagen: Andreas Trol, Pixabay

Gabón ha inaugurado su primer proyecto solar a escala comercial. La planta fotovoltaica de Ayémé está situada en la zona de Plaine-Ayeme, en el noroeste de Gabón, a unos 30 km de la capital del país, Libreville.

Solen SA Gabón, filial de Solen Renewable Dubai, construyó y opera el proyecto, con una capacidad inicial de 11 MW, según el medio local. la union.

Según se informa, la compañía dijo que pretende ampliar la instalación a 30 MW en virtud de un acuerdo de compra de energía (PPA) con la empresa estatal Société d’Energie et d’Eau du Gabon (SEEG). Se espera que el proyecto proporcione energía a 300.000 hogares y cree 150 puestos de trabajo directos.

La planta, anunciada en 2021, enfrentó retrasos y reducciones en la financiación después de que comenzara la construcción en agosto de 2022. Inicialmente planificada como un proyecto de 120 MW dividido en dos fases de 60 MW, se reducción durante el desarrollo.

En la inauguración, el presidente Brice Oligui Nguema destacó el proyecto como símbolo del compromiso de la nación con el desarrollo sostenible y la acción climática.

«De hecho, se trata de un hito importante en la producción y distribución de electricidad limpia, sostenible y moderna, lo que ilustra el compromiso de nuestro país para mejorar el acceso a la energía y la lucha contra el cambio climático», afirmó.

La combinación eléctrica de Gabón depende actualmente de la energía hidroeléctrica (47,7%), el gas natural (35%), el petróleo (16,9%) y los biocombustibles (0,3%), según la Agencia Internacional de Energía. (AIE).

El país informó sólo 1 MW de capacidad solar instalada a finales de 2022, sin cambios desde 2021, según la Agencia Internacional de Energías Renovables (IRENA).

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Benin ha iniciado la construcción de la planta fotovoltaica Forsun de 25 MW, que se unirá a los proyectos Defisol y TTC para ampliar la capacidad total de la central solar Illoulofin a 75 MW. El gobierno dijo que el proyecto está respaldado por una inversión de 25,8 millones de dólares.

Sitio Forsun

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/639710538399001731682303-600×384.jpg» data-large-file=»https://www.pv -magazine.com/wp-content/uploads/2024/11/639710538399001731682303-1200×769.jpg» tabindex=»0″ role=»botón»>

Sitio Forsun

Foto: Presidencia de Benín

El gobierno de Benin ha anunciado el inicio de la construcción de su central fotovoltaica Forsun de 25 MW.

Dijo en un comunicado que la nueva planta en la central solar de Illoulofin ampliará la capacidad total del sitio de 50 MW a 75 MW en tres conjuntos.

«El proyecto Forsun es el resultado de una fructífera cooperación con la Agencia Francesa de Desarrollo (AFD) y la Unión Europea, que contribuyendo junto con el gobierno de Benín a una inversión total de casi 16.000 millones de XOF (25,8 millones de dólares )», dice el comunicado. «Esta infraestructura, ubicada en Illoulofin, municipio de Pobè en el departamento de Plateau, enriquece el mix energético de Benín con energías limpias y renovables, en consonancia con los objetivos de desarrollo sostenible».

mensualque es el primer proyecto de 25 MW de Illoulofin, se construyó en 2022. Toyota Tsusho está construyendo actualmente la segunda planta de 25 MW, TTC. Está previsto que esté en línea pronto.

«Aumentar la capacidad del sitio de Illoulofin a 75 MWp será suficiente para suministrar electricidad a millas de hogares», afirmó el gobierno. “Con estos proyectos y logros, Benin continúa trazando su camino hacia la independencia energética sostenible, combinando innovación, desarrollo económico y preservación del medio ambiente. Las centrales eléctricas en Illoulofin encarnan esta ambición y prometen marcar la historia energética del país”.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Científicos en Suiza han creado un modelo de dinámica de sistemas para la adopción de energía fotovoltaica y bombas de calor en edificios residenciales suizos hasta 2050. Han examinado varios escenarios para ver cómo el incentivo para la energía fotovoltaica afecta la adopción de bombas de calor y al revés, y han concluido que son necesarios fuertes cambios regulatorios para descarbonizar completamente el sector residencial.

Un grupo de investigación liderado por ETH Zúrich ha modelado la dinámica de adopción conjunta de energía fotovoltaica y bombas de calor (HP) en edificios residenciales suizos. Se utilizó un estudio de caso para el cantón suizo del Ticino, que incluye ciudades como Lugano y Bellinzona, y la simulación se prolongó hasta 2050 en diferentes escenarios regulatorios.

“Este estudio presenta un modelo de dinámica de sistemas (SD) que evalúa el proceso de adopción conjunta de soluciones fotovoltaicas y de calefacción (HS) en el sector residencial suizo. El modelo considera la interdependencia de estas decisiones ya que la evaluación de la instalación de un fotovoltaico incorpora la consideración de HS, y viceversa”, dijeron los académicos. «Se elige SD porque se conoce como un enfoque de modelado para el desarrollo de estrategias y una mejor toma de decisiones en sistemas complejos».

SD descompone un sistema en diferentes variables y las relaciones entre estas variables se trazan mediante un diagrama de bucle causal (CLD). En general, los investigadores utilizaron tres pilares en el modelo (a saber, el precio de la electricidad, la adopción de ho y la adopción de fotovoltaica) que se afectan entre sí. Incluye bucles de refuerzo (R) que amplifican los cambios y bucles de equilibrio (B) que buscan la estabilidad del sistema.

Los bucles R1 y R2 muestran mecanismos de refuerzo impulsados ​​por efectos de pares. “Los bucles de equilibrio B1 y B2 representan el número total fijo de edificios capaces de adoptar energía fotovoltaica o HP. Los bucles de refuerzo R3 y R4 constituyen dos facetas del mismo fenómeno, que describen cómo la proliferación de tecnologías basadas en la electricidad influye en los precios de la electricidad”, explicó el equipo.

R5 y B3 delinean otra consecuencia de la adopción de fotovoltaica y HP en la red, ya que la integración de estas tecnologías aumenta la volatilidad de la demanda de electricidad y conduce a la necesidad de reforzar la red por parte del operador de la red. “Los costos de actualización de la red provocan precios más altos de la electricidad para los consumidores finales, amplificando la adopción de energía fotovoltaica (R5) y contrarrestando la adopción de HP (B3). Finalmente, el bucle de refuerzo R6 representa la sinergia tecnoeconómica entre PV y HP. La instalación de una HP en un edificio mejora el atractivo económico de instalar un sistema fotovoltaico, en comparación con los edificios calentados con tecnologías no eléctricas”, agregaron los académicos.

La simulación se alimentó con tres bases de datos oficiales: una sobre plantas de producción de electricidad, la segunda sobre la idoneidad de los tejados para energía solar y la última era un registro de edificios y viviendas. Se utilizaron datos históricos del cantón de Ticino para calibrar aún más 49 parámetros del modelo. En total, se simularon seis escenarios regulatorios.

El “escenario base” abarca los incentivos y el marco regulatorio vigente, incorporando la regulación RUEn recientemente introducida, que entró en vigor este año. Estas disposiciones regulan la instalación de nuevos sistemas de calefacción, limitando la proporción de energía proporcionada por tecnologías que emiten carbono al 80% para los edificios nuevos y al 90% en caso de sustitución de la calefacción en un edificio existente.

Otro escenario probado fue “no RUEn”, un caso hipotético en el que no se toma ninguna de las acciones anteriores. Además, el equipo probó un escenario en el que existe un incentivo aún mayor para la instalación fotovoltaica, otro caso en el que el incentivo para HP es mayor que el de RUEn, un caso en el que la regulación exige una mayor instalación fotovoltaica y, por último, un escenario en el cual se aplica más instalación de HP.

Fotovoltaica instalada por escenario

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-600×418.jpg» datos-large-file= «https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-1200×837.jpg» tabindex=»0″ role=»button» src=» https://www.pv-magazine.com/wp-content/uploads/2024/11/1-s2.0-S2211467X24002827-gr8_lrg-600×418.jpg» alt width=»600″ height=»418″ >

Fotovoltaica instalada por escenario

Imagen: ETH Zurich, Reseñas de estrategias energéticas, CC BY 4.0

“Si bien la adopción de HP en los edificios habría experimentado un aumento incluso en ausencia de la regulación RUEn, el escenario Base proyecta una implementación de HP significativamente mayor: la proporción de edificios con HP en 2050 pasa del 54% en el caso sin RUEn escenario al 68% en el escenario Base”, afirmaron los científicos. “Se espera que la capacidad total fotovoltaica instalada crezca significativamente en todos los escenarios considerados. Como era de esperar, los dos escenarios con resultados más altos son los Altos Incentivos Fotovoltaicos y el Regulador Fotovoltaico, donde la capacidad fotovoltaica instalada alcanza los 500 MWp”.

Al concluir su artículo, el equipo dijo que «los resultados demuestran que ligeros ajustes en la política y el marco regulatorio actuales podrían permitir alcanzar de manera segura los objetivos de implementación fotovoltaica, pero se necesitan modificaciones importantes para descarbonizar completamente el sector residencial».

Los resultados fueron presentados en “Modelado de la dinámica de adopción conjunta de energía fotovoltaica y bombas de calor en edificios residenciales suizos: implicaciones para las políticas y los objetivos de sostenibilidad”, publicado en Revisiones de estrategias energéticas. Científicos de Suiza ETH Zúrich y el Universidad de Ciencias y Artes Aplicadas del Sur de Suiza realizó la investigación.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El gobierno francés ha adjudicado 120 proyectos a un precio medio de 0,07928 euros (0,0355 dólares)/kWh en su última licitación fotovoltaica montada en suelo.

Los 120 proyectos fueron presentados por 41 promotores.

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/appel-doffres-sol-nov-2024-600×290.png» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/appel-doffres-sol-nov-2024.png» tabindex=»0″ role=»botón «>

Los 120 proyectos fueron presentados por 41 promotores.

Imagen: Finergreen

Delaware revista pv francia

el Ministerio francés de transición ecológica ha publicado los resultados de la sexta vuelta de la PProgramación Energética Plurianual Tierno fotovoltaico montado en suelo PPE2. Adjudicó 948,3 MW de capacidad en total para 120 proyectos.

La licitación estaba abierta a proyectos fotovoltaicos de entre 500 kW y 5 MW. La huella de carbono mínima se fijó en 200 kg CO2 eq/kW y la máxima en 550 kg CO2 eq/kW. El tiempo de puesta en servicio es de 30 meses.

El ejercicio de adquisición concluyó con un precio medio de 0,07928 euros (0,0355 dólares)/kWh.

Según la consultora Finergreen, entre los ganadores de la sexta ronda se identifican 41 promotores. Los desarrolladores que obtuvieron las mayores acciones fueron neones con 166,7MW, Urbasolar con 124,1 MW, Energías Totales con 68,7 MW, y Arkolia con 56,8 MW.

En el quinta licitaciónfinalizado en marzo, el Gobierno adjudicó 92 proyectos por un total de 911,5 MW a un precio medio de 0,0819 euros. En el cuarta licitación De la serie, las autoridades francesas asignaron 1,5 GW de capacidad fotovoltaica a un precio medio de 0,0824 euros/kWh.

Se espera que la próxima licitación fotovoltaica montada en suelo se celebre a finales de diciembre y asigne alrededor de 925 MW de capacidad fotovoltaica.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El Programa de las Naciones Unidas para el Desarrollo (PNUD) en Mozambique está aceptando ofertas para instalar 17 sistemas solares en instalaciones de salud seleccionadas en todo el país. La fecha límite para las solicitudes es el 13 de diciembre.

Imagen: Unsplash

El PNUD ha abierto una licitación para la implementación de instalaciones solares fotovoltaicas en 17 centros de salud en Mozambique.

Los 17 sitios están divididos en tres lotes que se ubican en las regiones norte, centro y sur del país.

el detalles de licitación afirman que el proyecto mejorará el suministro de energía a los centros de salud, que actualmente funcionan con la red nacional. También especifica que las instalaciones solares deberán ser soluciones híbridas solares fotovoltaicas llave en mano.

Los postores interesados ​​deberán confirmar su participación en una visita previa al sitio antes del 21 de noviembre. La fecha límite para presentar una solicitud es el 13 de diciembre.

Mozambique había instalado 83 MW de energía solar a finales de 2023, según cifras de la Agencia Internacional de Energías Renovables (IRENA).

El Plan Maestro de Infraestructura Eléctrica del país establece un objetivo que el 50% de su generación de energía provenga de fuentes de energía renovables para 2043.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

India ha instalado 12,8 GW de nueva capacidad solar de enero a junio de 2024, según Mercom India. Esto incluye 11,7 GW de proyectos solares a gran escala, con 3,7 GW de proyectos comerciales e industriales (C&I) externos y más de 1,1 GW de instalaciones fotovoltaicas en tejados.

Bombay, India

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2024/11/Mumbai_India_Bombay_Mumbai_skyline_at_sunset-600×400.jpg» data-large-file=»https://www.pv -magazine.com/wp-content/uploads/2024/11/Mumbai_India_Bombay_Mumbai_skyline_at_sunset.jpg» tabindex=»0″ role=»button»>

Bombay, India

Imagen: Vyacheslav Argenberg, Wikimedia Commons

Delaware revista pv India

India instaló 12,8 GW de nueva capacidad solar en el primer semestre de 2024, un aumento del 228,3% con respecto a los primeros seis meses de 2023, según el informe “India Solar Market Leaderboard 1S 2024” de Mercom India.

Los proyectos solares a gran escala representaron el 91,4% (11,7 GW) de las instalaciones, incluidos 3,7 GW de energía solar comercial e industrial de acceso abierto/fuera del sitio. Las instalaciones solares en tejados ascendieron a más de 1,1 GW.

En junio de 2024, la capacidad solar acumulada de la India alcanzó aproximadamente 85,5 GW, con 126,1 GW de proyectos a gran escala (incluido el acceso abierto) en desarrollo y 103,8 GW de licitaciones en espera de subasta.

Adani Green Energy lideró el desarrollo solar a escala de servicios públicos con las mayores incorporaciones de capacidad y la mayor capacidad acumulada a junio de 2024. ReNew y O2 Power ocuparon el segundo y tercer lugar en nueva capacidad agregada.

Los 10 principales desarrolladores juntos contribuyeron con el 76,8 % de las incorporaciones a escala de servicios públicos y poseían el 44,5 % de la cartera de desarrollo de proyectos en junio de 2024.

Para continuar leyendo, visita nuestro revista pv India sitio.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!