Científicos de los Países Bajos propusieron un nuevo plan de pruebas para reciclar el silicio procedente de paneles fotovoltaicos al final de su vida útil. Su metodología ayudó a crear diferentes categorías de objetos para reciclar silicio para la producción de nuevos lingotes, pero también demostró que la mayor parte del silicio reciclado en un futuro próximo provendrá de productos de tipo p, que difícilmente serán reutilizados en un mercado ahora dominado por módulos de tipo n.

Un grupo de investigación coordinado por el Organización Holandesa para la Investigación Científica Aplicada (TNO) ha investigado cómo las piezas limpias o los fragmentos de piezas recuperadas de módulos fotovoltaicos al final de su vida útil (EoL) podrían reutilizarse para la producción de nuevos lingotes de silicio cristalino y ha descubierto que las piezas dopadas con galio podrían ser particularmente adecuadas para este propósito.

Los científicos explicaron que el silicio de las obleas desechadas debería extraerse eliminando cualquier contaminación en sus superficies, lo que lo volvería a incluir en la categoría de materiales de alta pureza. «Los principales contaminantes son dopantes, oxígeno, carbono y quizás algo de nitrógeno», dijo el autor principal de la investigación. Bart Geerligs, dijo revistapv. «Analizamos esto principalmente desde la perspectiva del control de dopantes y resistividad, y hasta cierto punto también desde la perspectiva de otros contaminantes restantes».

En el estudio”Potencial de las células solares de silicio recicladas como materia prima para el crecimiento de nuevos lingotes.”, publicado en Progresos en energía fotovoltaicalos investigadores explicaron que su análisis abordó posibles limitaciones técnicas y económicas relacionadas, en particular, con dopantes e impurezas. También esperan que se puedan recuperar volúmenes significativos de silicio, especialmente de obleas de tipo P, a partir de 2040 aproximadamente, y que los mercados dopados con boro y galio se dividen más o menos equitativamente.

El grupo de investigación también creó una metodología para separar módulos de tipo ny de tipo p, y paneles de tipo p dopados con boro versus dopados con boro o galio. Se desarrollaron, por ejemplo, que si las células solares del módulo son policristalinas, necesariamente están dopadas con tipo p B. «Hasta donde sabemos, no ha habido producción comercial de módulos de tipo n basados ​​​​en silicio policristalino», dijeron los académicos .

Además, crearon una separación entre las piezas que tienen metalización frontal o no. También dijeron que se debe identificar el voltaje para todos los módulos, excepto aquellos basados ​​en la tecnología de celdas de contacto posterior interdigitado (IBC), y que se debe realizar una inspección visual en la parte posterior de todas las celdas. “El principio para la inspección es entonces que todas las celdas industriales de Al-BSF y PERC de tipo p tienen una metalización lateral trasera de Al combinada con almohadillas de plata locales para soldar las cintas de interconexión, y las celdas industriales de tipo n no. tienen tal combinación”, precisaron.

El equipo explicó que todo el plan de pruebas podría evitarse si una etiqueta en el panel desechado tuviera información útil. «Por ejemplo, se podría documentar que un módulo contiene células HJT (tipo n) o estar basado en células IBC de un fabricante como Sunpower o Maxeon», explicó con más detalle. «También sería muy útil si los módulos PERC mostraran visiblemente una fecha de producción porque antes de 2019, esto implicaría dopaje con boro, y después de 2022, implicaría dopaje de galio en las obleas».

«Este plan daría como resultado tres flujos de materiales», Geerligs dicho. «Estas son células dopadas de tipo n, células dopadas con boro de tipo py un flujo de células PERC monocristalinas que podrían estar dopadas con boro o con galio».

Los científicos concluyeron que reutilizar obleas de tipo p como materia prima para nuevos lingotes de tipo p no será económicamente viable, ya que las células de tipo n son ahora la tecnología dominante.

«La posible reducción de costes derivada del uso de materia prima reciclada no parece ser suficiente para compensar esto», afirmaron. “Otra posibilidad de obtener una rentabilidad mucho mayor para el reciclaje de oblea tipo p puede estar disponible con la tecnología en tándem perovskita-silicio, en cuyo caso la desventaja de eficiencia en comparación con el tipo n se reduce considerablemente y el rendimiento de la celda PERC se puede mejorar mediante un poli – Emisor de Si.”

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Pess Energy ha lanzado FlyWatt, un generador compacto de batería de 10 kWh para equipos de producción de cine y televisión. Está disponible un kit de paneles solares compatibles para recargar el equipo fuera de la red.

francés portátil pVayawer El desarrollador Pess Energy ha lanzado FlyWatt, un generador compacto de batería de 10 kWh para equipos de producción de cine y televisión. Es el último de su línea de generadores a batería fabricado para equipos de cinematografía, construcción, eventos y servicios de emergencia.

Al igual que el resto de productos fuera de la red de su catálogo, Flywatt se basa en la tecnología de baterías de iones de litio. Se puede recargar con el kit de panel solar de silicio Ekla de 1500 W que viene con su propio estuche de viaje para facilitar su embalaje y transporte.

Flywatt se creó teniendo en cuenta las necesidades de los equipos de producción de cine y televisión.

“Nuestro principal mercado es la producción cinematográfica y para ellos es principalmente una cuestión ecológica. Tienen estándares medioambientales mucho más estrictos y están obligados a utilizar herramientas más respetuosas con el medio ambiente”, dijo un portavoz de Pess Energy. revistapv. “Otro aspecto importante de los generadores de batería es la comodidad de trabajo. En comparación con una unidad alimentada por gas, nuestros generadores son totalmente silenciosos y no emiten olores, lo que podría cambiar la vida en industrias como el cine o la construcción”.

FlyWatt mide 69 cm x 56 cm x 85,5 cm, lo que lo hace lo suficientemente pequeño como para apilar 6 unidades emparejadas en una camioneta de carga para proporcionar hasta 66 kW. Cada unidad de 10 kWh proporciona a los usuarios finales 6 tomas de banco de energía a 16 A y 32 A por unidad. Tiene un tiempo de recarga de 3 horas en enchufe doméstico.

El kit solar Ekla proporciona hasta 8.800 Wh de recarga al día, dependiendo de las condiciones meteorológicas. El kit contiene cuatro paneles basados ​​en células solares monocristalinas con una eficiencia de conversión de energía del 18%. Cada conjunto tiene un pie de apoyo plegable para un posicionamiento óptimo durante todo el día.

Los kits Ekla se pueden utilizar para cargar otros productos de Pess Energy, como la batería Bobine de 5 kWh en 6 horas. El Wattman más grande de 10 kWh requiere 2 kits Ekla para recargarse en 6 horas. Los paneles fotovoltaicos pesan 100 kg incluyendo su maletín de transporte. Según se informa, los paneles tienen una vida útil de 10 años.

Pess Energy se fundó en 2021 y tiene su sede en Marsella. Está respaldado por inversores de capital riesgo con sede en Francia, incluidos Rise Partners, Région Sud Investissement, Crédit Agricole Alpes Provence y CAAP Création.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Sonnedix ha obtenido 3.250 millones de euros (3.380 millones de dólares) a través de dos transacciones de refinanciación. El productor de energía renovable dice que las transacciones serán fundamentales para acelerar el crecimiento de su cartera en toda Europa.

Imagen: Sonnedix

Productor de energía renovable Sonnedix ha obtenido 3.250 millones de euros a través de dos operaciones de refinanciación.

El español CaixaBank realizó la primera transacción, valorada en 750 millones de euros, para refinanciar la cartera de activos regulados de 197 MW de Sonnedix en España. El acuerdo consolidó siete rondas de financiación en una.

Quince prestamistas comerciales e inversores institucionales gestionaron la segunda transacción, por valor de 2.500 millones de euros. Esta refinanciación cubre una cartera de 1,1 GW de activos renovables en España, Italia y Francia, con capacidad de ampliar la instalación para incluir nuevos activos en Europa y Reino Unido.

Sonnedix dijo que las transacciones son las iniciativas de refinanciación más grandes e innovadoras de su historia y «serán fundamentales para acelerar el crecimiento de su cartera», incluidos proyectos híbridos e instalaciones de almacenamiento de energía.

«Estas refinanciaciones optimizan nuestra estructura corporativa, proporcionan liquidez corporativa adicional y reducen el riesgo», añadió Daniel Machuca, director de financiación de proyectos de Sonnedix en Europa.

En febrero, Sonnedix anunció una 260 millones de euros Préstamo verde para financiar proyectos de energía renovable en Italia.

La compañía afirma tener una capacidad total de más de 11 GW en proyectos de energía renovable, incluida una cartera de desarrollo de más de 6 GW, en Chile, Francia, Alemania, Italia, Japón, Polonia, Portugal, España, Estados Unidos y el Reino Unido.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El último informe del Programa de Sistemas de Energía Fotovoltaica (PVPS) de la Agencia Internacional de Energía (AIE) dice que la industria fotovoltaica integrada en edificios (BIPV) se enfrenta a desafíos importantes debido a la falta de procedimientos claros de prueba y certificación. Dice que el consenso internacional y la armonización de los procesos de certificación serán cruciales para la adopción generalizada de la tecnología.

Existe una necesidad urgente de armonizar las normas de prueba y certificación para la energía fotovoltaica integrada en edificios (BIPV), según el último informe del Programa de sistemas de energía fotovoltaica de la Agencia Internacional de Energía (AIE-PVPS).

El informe de la Tarea 15 del programa, Avanzando en la estandarización de BIPV: abordando las brechas regulatorias y los desafíos de desempeñodice que dichas normas deben abordar los requisitos electrotécnicos y relacionados con la construcción y son cruciales para reducir costos, simplificar la entrada al mercado y promover la cooperación internacional.

El informe explica que el crecimiento de BIPV «no siempre ha cumplido las expectativas» y todavía sólo ocupa un nicho en el sector solar, con un mercado estimado actualmente entre 300 MW y 500 MW en Europa y alrededor de 2 GW a nivel mundial.

Cita los desafíos de integración, la falta de estandarización y rentabilidad como razones principales para la adopción más lenta de BIPV, así como la educación limitada entre los profesionales de la construcción, la escasez de personas capacitadas que combinan la experiencia fotovoltaica y de construcción y la competencia de las soluciones tradicionales.

«Esto también está relacionado con el hecho de que existe una clara diferencia en la estandarización entre los dos sectores de edificios y equipos eléctricos», dice el informe. «Si bien la energía fotovoltaica tradicional cuenta con un conjunto completo de estándares, BIPV aún busca pruebas estandarizadas que abarquen tanto las necesidades de la energía fotovoltaica como las de construcción y eviten la duplicación de pruebas similares».

El informe explica que la regulación BIPV a nivel internacional todavía se aborda principalmente mediante las normas IEC para la parte eléctrica y las normas ISO para la parte de construcción. Dado que para obtener la validación y certificación de sus productos, los fabricantes de BIPV deben realizar pruebas y seguir los procedimientos de cumplimiento establecidos por ambos sectores, lo que puede generar mayores costos, retrasos e incertidumbres en el mercado.

El informe dice que un marco de estandarización claro y específico, que considera factores como la calidad, la confiabilidad, el rendimiento y la seguridad, es crucial para el futuro de BIPV, ya que ayudará a desbloquear un mayor potencial de mercado y garantizar estándares de seguridad y calidad.

Agrega que la armonización global en todo el mercado, al lograr un equilibrio entre los protocolos estandarizados y las regulaciones de construcción locales, será clave para garantizar una calidad y adaptabilidad constantes en todas las regiones.

Fabio Parolini, uno de los autores del informe, calificó a BIPV como un paso crítico para liberar todo su potencial en la transición global hacia la energía sostenible. «El informe destaca la necesidad urgente de cerrar las brechas regulatorias y armonizar los estándares para la energía fotovoltaica integrada en edificios (BIPV)», añadió.

El informe también detalla metodologías basadas en el rendimiento para evaluar el comportamiento mecánico y eléctrico de módulos y sistemas BIPV, allanando el camino para productos más eficientes y confiables.

En otra parte del informe, la IEA-PVPS dice que se ha logrado un avance significativo a través del proyecto BIPVBOOST, una iniciativa europea que documenta criterios y requisitos de última generación para la clasificación de productos BIPV y propone protocolos de prueba iniciales, incluidas las temperaturas de funcionamiento y el impacto. pruebas de resistencia.

“Este enfoque proactivo, que actualmente se está implementando en proyectos en curso, tiene como objetivo impulsar avances en la tecnología BIPV al fomentar el consenso internacional y facilitar integración en los marcos regulatorios existentes, allanando el camino para un futuro prometedor para BIPV”, concluye el documento.

El último informe de la IEA-PVPS sigue a publicaciones recientes sobre generadores fotovoltaicos parcialmente sombreados, fabricación solar global y Centros energéticos para el hidrógeno verde..

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Las instalaciones solares crecieron un 4% interanual en la Unión Europea en 2024, muy por debajo del crecimiento del 53% en 2023. La desaceleración coincide con una disminución de la inversión en energía solar, lo que marca la primera caída de este tipo en este década. SolarPower Europe prevé ahora un crecimiento anual del 3% al 7% en instalaciones solares de 2025 a 2028.

Los desarrolladores desplegarán 65,5 GW de energía solar en toda la Unión Europea en 2024, según Energía Solar Europa‘s «Perspectivas del mercado de la UE para la energía solar 2024-2028.”

La cifra refleja un crecimiento anual del 4% en comparación con los 62,8 GW de instalaciones de 2023, una fuerte caída con respecto al crecimiento del 53% registrado entre 2022 y 2023. El parque solar de la UE suma ahora 338 GW, cuatro veces más que los 82 GW de hace una década.

SolarPower Europe atribuyó la desaceleración a factores más allá de la caída de los precios de los componentes solares y los menores costos iniciales de las instalaciones. Los proyectos solares a escala comercial montados en suelo experimentaron una reducción de costos promedio del 28% en 2024.

A pesar de la reducción de los costes de capital, la inversión solar de la UE cayó por primera vez en esta década, pasando de 63.000 millones de euros (66.200 millones de dólares) en 2023 a 55.000 millones de euros en 2024.

Walburga Hemetsberger, directora ejecutiva de SolarPower Europe, calificó el informe como una advertencia para los responsables políticos y operadores de sistemas europeos.

«Ralentizar el despliegue solar significa frenar los objetivos del continente en materia de seguridad energética, competitividad y clima», afirmó Hemetsberger. “Europa necesita instalar alrededor de 70 GW al año para cumplir sus objetivos para 2030. Se necesitan medidas correctivas ahora, antes de que sea demasiado tarde”.

Los pronósticos de SolarPower Europe para 2025 a 2028 sugieren que el crecimiento se estabilizará entre el 3% y el 7% en los próximos años.

Se espera que el mercado agregue 70 GW en 2025, lo que refleja una tasa de crecimiento del 7% impulsada por proyectos a escala de servicios públicos iniciados durante los últimos dos años, que se beneficiaron de precios de módulos récord. Se prevé que las tasas de crecimiento caigan al 3% en 2026, con 72,3 GW de nueva capacidad solar, a medida que los desarrolladores responden a las limitaciones de la red y las incertidumbres del mercado.

El escenario medio de SolarPower Europe prevé una mejora del 6% hasta 76,5 GW en 2027 y un aumento del 7% hasta 81,5 GW en 2028.

“Este crecimiento más lento refleja graves desafíos estructurales, en particular en aquellos Estados miembros donde las adaptaciones de los marcos políticos y la infraestructura se han quedado rezagadas con respecto a la energía solar. «La rápida evolución del sector hasta convertirse en un pilar notable del suministro de energía», señala el informe. «También queda por ver qué significa para la energía solar en la UE el cambiante panorama político hacia la derecha».

Las lentas tasas de electrificación continúan suprimiendo la demanda en el mercado solar, con la tasa de electrificación del continente estancada en el 23% en los últimos cinco años, lo que hace que gran parte del sistema energético dependa de combustibles fósiles. SolarPower Europe señaló que la Electrification Alliance está presionando para lograr una tasa de electrificación del 35% para 2030.

El informe también destaca la falta de flexibilidad del sistema energético, lo que ha llevado a restricciones solares y precios negativos, socavando la seguridad energética y la competitividad europeas como factores adicionales que contribuyen a la desaceleración.

Las instalaciones solares residenciales disminuyeron drásticamente en 2024, con 5 GW de energía solar residencial agregada en comparación con los 12,8 GW del año pasado. SolarPower Europe atribuyó esta disminución al impacto cada vez menor de la crisis energética y pronostica que esta tendencia persistirá en los próximos años.

Según el informe, es probable que las instalaciones solares más grandes crezcan más rápidamente que los proyectos sobre tejados en la UE durante la segunda mitad de la década. Sin embargo, se espera que las instalaciones en tejados, partiendo de una base más grande, retengan una mayor proporción de la capacidad solar total de la UE durante la década en comparación con los proyectos a escala de servicios públicos.

A nivel nacional, SolarPower Europe descubrió que cinco de los diez principales mercados solares de la UE (España, Polonia, Países Bajos, Austria y Hungría) instalaron menos energía solar en 2024 que en 2023. Mientras tanto, Alemania, Italia, Francia, Grecia y Polonia experimentaron ganancias modestas, y la mayoría agregada alrededor de 1 GW más que el año pasado.

Entre 2025 y 2028, se prevé que Alemania, España e Italia lideren el crecimiento del mercado solar de la UE.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La Autoridad de Contratación Pública de Bangladesh está buscando consultores para completar un estudio de viabilidad para la construcción de un parque solar. La fecha límite para las solicitudes es el 9 de enero de 2025.

Imagen: Michael Wilson, Unsplash

La Autoridad de Contratación Pública de Bangladesh busca una empresa consultora para completar un estudio de viabilidad técnica y económica para la construcción de un parque solar.

Según el aviso de licitaciónel trabajo se relaciona con la construcción de un proyecto solar en el área de Jamalpur Char en el norte Bangladesh.

el términos de referencia afirman que el estudio de viabilidad debe incluir tierras, recursos solares, integración de la red de energía renovable variable (ERV) y evaluaciones tecnoeconómicas, junto con una hoja de ruta de desarrollo.

Las autoridades aceptarán ofertas de empresas consultoras internacionales. La fecha límite para las manifestaciones de interés es el 9 de enero de 2025.

A principios de este mes, la Junta de Desarrollo Energético de Bangladesh lanzó una licitación para la instalación de 12 proyectos solares conectados a la red con una capacidad combinada de 353 MW. La licitación está abierta hasta el 3 de febrero de 2025.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) y el Instituto Fraunhofer de Tecnología Ambiental, Seguridad y Energía (Fraunhofer UMSICHT) afirman que su nueva fachada combina módulos fotovoltaicos, protección contra la intemperie y aislamiento térmico. Eliminar la necesidad de una subestructura y utilizar aislamiento elaborado con materias primas sostenibles.

Imagen: Fraunhofer ISE, Mona Mühlich

Delaware revista pv Alemania

El enfoque estándar para la construcción de sistemas fotovoltaicos integrados en fachadas utiliza sistemas de montaje especializados para combinar módulos solares con fachadas estilo cortina con ventilación trasera.

Para abordar esto, Instituto Fraunhofer ISE y Fraunhofer UMSICHT han desarrollado un elemento de fachada que integra fotovoltaica, protección contra la intemperie y aislamiento térmico en una sola unidad.

Los institutos dijeron que su nuevo sistema elimina la necesidad de una subestructura adicional. Los elementos prefabricados, de 1 metro x 1,2 metros, se presentan en dos versiones con aislamiento elaborado con materias primas renovables, como fibras de cáñamo y setas.

«Ambos materiales son adecuados para su uso en fachadas en términos de comportamiento al fuego», afirma Holger Wack, jefe del grupo de desarrollo de materiales de construcción en Fraunhofer UMSICHT.

El material del hongo se puede producir a partir de residuos agrícolas, lo que lo hace muy eficiente en el uso de recursos. Ambos tipos de aislamiento están diseñados para una fácil separación de los elementos de la fachada para permitir el reciclaje.

Según se informa, esta construcción integrada reduce significativamente el uso de materiales en comparación con la energía fotovoltaica integrada en edificios (BIPV) convencional. Los elementos también se montan rápidamente y, en caso necesario, se pueden desmontar individualmente sin afectar a los componentes vecinos. Una instalación de prueba en el Instituto Fraunhofer de Física de la Construcción IBP en Holzkirchen (Alemania) demostró velocidades de montaje de menos de 1,5 horas por elemento.

Actualmente, la fachada fotovoltaica está siendo sometida a un intenso control de la potencia, la durabilidad, el comportamiento de temperatura y humedad y el rendimiento del aislamiento térmico. Los investigadores también están desarrollando una descripción del proceso digital para garantizar un diseño y montaje adecuados en futuros proyectos de construcción.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El programa Nacional Interdisciplinario de Investigación sobre Economía Circular (NICER) afirma en un nuevo informe que la industria solar del Reino Unido podría generar 1,2 millones de toneladas de residuos para 2050. Pide medidas de economía circular para cumplir los objetivos de implementación solar y energía solar neta cero.

Un nuevo informe insta a la Reino UnidoLa industria solar comenzará a implementar economía circular medidas para garantizar que el país alcance sus objetivos netos cero.

El informe”,De lineal a circular: evidencia del sector solar del Reino Unido”, dice el crecimiento de la industria solar del Reino Unido dio lugar a unas 152.523 toneladas de aluminio, 8.745 toneladas de cobre y 667.947 toneladas de material de vidrio incrustadas en instalaciones solares del Reino Unido para finales de 2023.

Dijo que esto podría convertirse en “un flujo de residuos problemático” en el futuro y agrega que la transición a una economía circular es “imperativa” para alinearse con el objetivo de cero emisiones netas del Reino Unido y su objetivo de desplegar 70 GW de energía. energía solar para 2035.

Ananda Nidhi, coautor del informe, dice que al adoptar principios de economía circular, la industria solar del Reino Unido podría hacer frente a los 1,2 millones de toneladas de residuos solares estimados que podrían generarse para 2050 manteniendo más de 2 mil millones de dólares en aluminio, cobre y plata. integrado en la energía solar en uso, al tiempo que genera aproximadamente 460 millones de dólares gracias al aumento de las tasas de reciclaje.

«Una economía circular también tiene el potencial de estimular el crecimiento económico mediante la creación de nuevos puestos de trabajo y el fomento del desarrollo de empresas en los sectores de reparación, renovación y reciclaje», afirmó Nidhi.

Un cambio hacia una economía circular requerirá repensar el diseño de productos, el uso de materiales y la gestión del final de su vida útil en toda la cadena de valor solar, afirmó NICER. Señaló oportunidades y desafíos asociados con la implementación de principios de economía circular en toda la cadena de valor solar e incluye detalles sobre iniciativas existentes que implementan medidas de economía circular.

Entre los ejemplos se encuentra un proyecto que explora el uso de negro de humo reciclado de neumáticos de vehículos usados ​​en aplicaciones que incluyen la energía fotovoltaica. El equipo de investigación ha descubierto que el negro de humo de neumáticos usados ​​podría igualar o incluso superar el rendimiento de los materiales puros, proporcionando una alternativa circular a la incineración o los vertederos.

Otro ejemplo es la colaboración del ayuntamiento londinense Hammersmith & Fulham con la empresa emergente Re-Solar, con sede en Cornualles, para realojar paneles solares. Los paneles involucrados, que todavía tienen más de 10 años de vida operativa, fueron enviados a Ucrania para ayudar a dotar al país de poder descentralizado.

NICER enumeró las principales barreras a la circularidad en el sector solar como la falta de políticas de final de vida, limitaciones de diseño y lagunas de datos. dijo que las partes interesadas deberían adoptar diseños libres de halógenos y plomo, invertir en infraestructura de reciclaje, eliminar los paneles solares de Normativa RAEEy permitir el uso de una segunda vida para los productos dentro del Esquema de Certificación de Microgeneración.

“El momento de hacer esto es ahora. El sector solar del Reino Unido se encuentra en un momento crítico, con un crecimiento sustancial mientras opera con un modelo lineal”, dijo Nidhi. «Al implementar las recomendaciones descritas en este informe, el Reino Unido puede liderar el camino en la creación de una industria de energía solar resiliente y sostenible».

NICER desarrolló el informe con académicos de la Universidad de Exeter.

el reino unido desvelado su Plan de Acción Clean Power 2030 la semana pasada, que apunta a 30 GW de capacidad solar en su combinación de generación para finales de la década.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

En medio de precios récord para los módulos solares, el enfoque de la reducción de costos para los proyectos solares a escala de servicios públicos se está desplazando hacia los gastos de equilibrio del sistema (BoS) no relacionados con los módulos. Se espera que la transición de un voltaje de 1,5 kV a 2 kV en proyectos solares gane impulso hasta 2030.

Delaware revista pv edición impresa 24/12

La justificación para pasar de un voltaje de 1,5 kV a 2 kV en proyectos solares se basa en principios eléctricos, en particular la relación entre potencia eléctrica (P), corriente (I) y voltaje (V), expresada como P=IV. . Al aumentar el voltaje mientras se mantiene la corriente constante, se puede aumentar la producción de energía sin pérdidas adicionales. Se espera que esta transición produzca un aumento del 0,5% al ​​​​0,8% en el rendimiento energético de los sitios fotovoltaicos.

Los voltajes más altos se adaptan a cadenas de módulos más largos. Un sistema de 1,5 kV puede acomodar 33 módulos clasificados a 45 V de corriente continua, mientras que un sistema de 2 kV puede acomodar 44 módulos, lo que representa un aumento del 33 % en la capacidad de energía. Una longitud de cuerda más larga significa menos cuerdas. Esto ayuda a reducir el equilibrio eléctrico de los gastos del sistema, incluidos los costos de cajas de combinación, conectores y cableado, entre un 10% y un 15%. La cantidad de inversores necesarios también debería disminuir, ya que los voltajes más altos se adaptan a componentes electrónicos con mayor densidad de potencia.

Si bien los inversores de 2 kV cuestan más debido a la menor escala de fabricación de algunos componentes y al aumento de los requisitos de prueba, las perspectivas a largo plazo siguen siendo positivas. El cambio a 2 kV hará que los inversores tengan más densidad de energía, lo que ahorrará en carcasas, fusibles y otros componentes. Menos componentes de proyectos solares deben reducir los costos laborales y significar menores gastos de operación y mantenimiento (O&M). Eso podría significar, eventualmente, entre un 1% y un 2% menos de costos de capital, además de un mayor rendimiento energético.

Desafíos clave

Se deben abordar varios desafíos antes de que pueda ocurrir una adopción generalizada. El principal obstáculo es la disponibilidad de inversores de 2 kV, ya que hay que resolver numerosos desafíos técnicos. Actualmente, los componentes capaces de manejar 2 kV son limitados y los fabricantes de inversores tienen que lidiar con problemas relacionados con cajas combinadoras, aislamiento externo, fusibles e interruptores. Se debe realizar una cantidad sustancial de pruebas de hardware y software para garantizar la confiabilidad y el funcionamiento seguro de los inversores de 2 kV en la red. También existen mayores desafíos relacionados con la adopción de 2 kV para inversores de cadena a gran escala que para los inversores centrales, debido a la mayor densidad de potencia de los primeros. Esto puede retrasar ligeramente la adopción de inversores string de 2 kV, en comparación con los dispositivos centrales.

La disponibilidad limitada de estándares es otra barrera importante que obstaculiza el desarrollo y la adopción de productos de 2 kV. Recientemente, JinkoSolar Holding Co. Ltd. se convirtió en la primera empresa de módulos solares en recibir la certificación de UL Solutions Inc. para sus módulos de 2 kV. Sin embargo, llevará tiempo hasta que surjan procesos de certificación completamente formados y aún más hasta que los fabricantes alineen sus productos con estos estándares. Convencer a los desarrolladores para que inviertan en proyectos de 2 kV plantea otro desafío, ya que estos nuevos sitios serán inherentemente más riesgosos que los proyectos estándar de 1,5 kV, con costos más altos y una selección más pequeña de proveedores.

Para los módulos, el aumento de voltaje requiere una mayor distancia de fuga entre las partes eléctricas, lo que puede reducir ligeramente la eficiencia de un módulo y aumentar su costo por vatio. Además, los fabricantes de módulos se centran actualmente en el cambio a la tecnología de tipo n, junto con márgenes reducidos debido al exceso de oferta de paneles, lo que disminuye su disposición a invertir en nueva tecnología. Sin embargo, la transición a 2 kV no es particularmente difícil para los módulos, en comparación con los desafíos que enfrentan los fabricantes de inversores, ya que la mayoría de los grandes módulos fotovoltaicos comerciales y de servicios públicos ya utilizan una estructura de vidrio, lo que proporciona suficiente aislamiento y protección para voltajes más altos.

Previsión tecnológica

Es probable que China y Estados Unidos sean las primeras regiones en adoptar la tecnología de 2 kV. China sirve como campo de pruebas para los mayores fabricantes de servicios públicos del mundo y se espera que lleve a cabo numerosos proyectos piloto para garantizar la confiabilidad de los componentes antes de que los fabricantes se expandan a los mercados internacionales. Los plazos de entrega más rápidos en China también facilitarán una entrada más rápida al mercado para productos de 2 kV. Se espera que Estados Unidos haga lo mismo: GE Vernova lanzó recientemente un inversor de 2 kV, lo que marca un paso significativo en el mercado.

Hará falta tiempo para que los desarrolladores y las empresas de servicios de ingeniería, adquisiciones y construcción se acostumbren a los productos de 2 kV, además de plazos más largos para tomar decisiones de inversión en Estados Unidos. Partiendo del precedente histórico del cambio de 1 kV a 1,5 kV, donde los envíos de inversores de 1,5 kV aumentaron dos años después de los primeros proyectos piloto, se prevé que la adopción más amplia de la tecnología de 2 kV llevará varios años. S&P Global pronostica que los productos de 2 kV crecerán de menos de 5 GW, en 2026, a 380 GW en 2030, lo que representará el 77% de los proyectos solares a escala de servicios públicos en todo el mundo para ese momento.

El cambio a 2 kV presenta una oportunidad prometedora para reducciones a largo plazo en los costos de equilibrio del sistema, inversores, mano de obra y operación y mantenimiento, gracias a diseños de sitio más simples y pequeños aumentos en el rendimiento energético. La colaboración de toda la industria es esencial para superar los desafíos técnicos, establecer estándares e impulsar la adopción. Una mayor conciencia de este salto tecnológico es crucial para identificar ahorros de costos adicionales en el equilibrio de los sistemas. Si bien persisten desafíos técnicos, particularmente en el diseño de productos inversores de 2 kV, S&P predice que la energía solar a escala de servicios públicos comenzará a hacer la transición a 2 kV entre 2026 y 2027, particularmente en Estados Unidos y China.

Sobre los autores: Liam Coman es analista de investigación solar en S&P Global Commodity Insights y cubre las cadenas de suministro de inversores solares, inversores de equilibrio del sistema e inversores de almacenamiento de energía. Coman trabaja con proveedores para analizar tendencias, pronósticos y evaluar la industria de los inversores solares. Anteriormente trabajó para una consultoría de ingeniería especializada en regulación ambiental y cumplimiento de políticas.

SiqiHe es analista principal del equipo de tecnología de energía limpia de S&P Global Commodity Insights, responsable de la investigación de la cadena de suministro solar, fotovoltaica e inversores de almacenamiento de energía. Trabajó previamente para Wood Mackenzie Power & Renewables en Nueva York y pasó cuatro años como analista financiero en PetroChina en Beijing.

Karl Melkonian es analista principal del equipo de tecnología de energía limpia, y se especializa en investigación y análisis del mercado de energía y energías renovables, particularmente para los mercados fotovoltaicos y las empresas solares. Su enfoque incluye análisis financiero, tecnología y materiales de fabricación, y las tendencias y requisitos de la industria fotovoltaica.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

PXP Corporation ha conseguido recientemente 1.500 millones de yenes (9,98 millones de dólares) en una ronda liderada por Softbank Corp. de Japón para seguir adelante con su plan de construir una fábrica de módulos de calcopirita de 25 MW.

PXP Corporation, una nueva empresa japonesa que desarrolla soluciones flexibles calcopirita módulos fotovoltaicos anunció que obtuvo 1.500 millones de yenes (9,98 millones de dólares) a través de una ronda de capital de riesgo Serie A liderada por SoftBank Corp. de Japón, una empresa de tecnología de medios y telecomunicaciones que cotiza en bolsa.

Calcopirita (CuGaSe2) tiene una banda prohibida de energía de 1,7 eV y hasta la fecha se ha utilizado en células solares con factor de llenado limitado y voltaje de circuito abierto.

PXP Corporation tiene planes de producir módulos de calcopirita flexibles y desarrollar una tecnología de células solares en tándem de perovskita-calcopirita. El objetivo es pasar de una línea piloto a una planta dedicada a la producción, la I+D y la formación. «Estamos planificando la planta con una capacidad de producción anual de alrededor de 25 MW», dijo el director de tecnología de PXP Corporation, Hiroki Sugimoto. revistapv.

Está previsto que se inicie la producción de módulos de calcopirita con una eficiencia del 18%. En una etapa posterior, la empresa pretende producir paneles de calcopirita con una eficiencia de conversión de energía del 19,2%, según Sugimoto.

PXP también está trabajando en células en tándem de perovskita-calcopirita, que alcanzaron una eficiencia del 26,5 % en el laboratorio a principios de este año. «Desde entonces, los esfuerzos se centran en mejorar la durabilidad», afirmó Sugimoto.

PXP Corporation ha estado demostrando durante el año pasado sus módulos de calcopirita livianos y flexibles en una variedad de aplicaciones fotovoltaicas integradas en vehículos (VIPV), como contenedores refrigerados portátiles alimentados con energía solar, un automóvil de pasajeros con energía solar integrada y un triciclo eléctrico. .

Un portavoz de Softbank dijo revistapv que la empresa objetivos utilizar la tecnología PXP en diversas aplicaciones, como alimentar centros de datos con energía limpia, suministro energía para estaciones base portátiles que se desplegarán en áreas afectadas por desastres durante emergencias Estación de plataforma de gran altitud ultraligera (HAPS)el avión propulsado por energía solar debía volar a una altitud de 20 km sobre la superficie terrestre y llevar como carga útil estaciones base de telecomunicaciones.

Los coinversores en la ronda de financiación de riesgo incluyen Solable Corporation, Kowa Optronics, Toyota Tsusho Corporation, J&TC Frontier, un vehículo de inversión conjunta entre JFE Engineering Corporation y Tokyo Century Corporation, Automobile Fund Co., Mitsubishi HC Capital Co, Yokohama Capital Co. ., Ltd. y Taro Ventures.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!