Un grupo de investigación chino ha creado una nueva tecnología de refrigeración radiativa para dispositivos fotovoltaicos. Consiste en una cámara hecha de etileno-tetrafluoroetileno y polidimetilsiloxano que, cuando se coloca encima de las células solares, puede alcanzar una potencia de enfriamiento promedio de aproximadamente 40 W/m2.

Investigadores de China han desarrollado un nuevo enfriamiento radiativo Tecnología para dispositivos fotovoltaicos que, según se informa, puede alcanzar una densidad de potencia de refrigeración de hasta 40 W/m.2 y una densidad de potencia fotovoltaica de hasta 103,33 W/m2.

El enfriamiento radiativo ocurre cuando la superficie de un objeto absorbe menos radiación de la atmósfera y emite más. Como resultado, la superficie pierde calor y se puede lograr un efecto de enfriamiento sin necesidad de energía.

Los científicos explicaron que su sistema de enfriamiento de radiación diurna de tipo transmisión consta de una cámara hecha de etileno-tetrafluoroetileno (ETFE) y polidimetilsiloxano (PDMS) que se coloca encima de la célula solar. Estos materiales tienen una alta transmitancia solar y emisividad en el infrarrojo medio.

«Las células solares demuestran una importante absortividad en el infrarrojo medio a lo largo de la banda de luz solar», explicó el equipo. “Los materiales tradicionales de enfriamiento radiativo diurno exhiben una alta reflectividad dentro de la banda de luz solar (0,28 a 2,5 mm) y una alta emisividad en el infrarrojo medio en la ventana atmosférica de 8 a 13 mm. La compatibilidad del enfriamiento radiativo diurno con células solares para una conversión eficiente de energía ha planteado desafíos debido a la necesidad de reflejar la luz solar”.

Para superar estos desafíos, el equipo comenzó analizando grupos funcionales, lo que resultó en encontrar ETFE y PDMS como las mejores opciones. A continuación, se probaron varios espesores de películas de ETFE y películas de PDMS. Finalmente, el equipo decidió utilizar ETFE con un espesor de 150 mm como material de la capa superior de la cámara y PDMS con un espesor de 5 mm como material de la capa inferior de la cámara.

«Se utilizó una máquina de grabado láser para tallar dos paneles acrílicos, cada uno de los cuales medía 20 cm de largo y 12 cm de ancho, en un rectángulo vacío con dimensiones de 17 cm de largo y 10 cm de ancho en el centro» , dijeron los académicos. «Las películas de ETFE y PDMS se sujetaron entre los paneles acrílicos y se aseguraron con tornillos, creando una cámara de 5 mm de espesor entre las dos películas».

La cámara se colocó sobre una célula solar de silicio monocristalino con una eficiencia del 13%. Para optimizar la eficiencia del enfriamiento radiativo, una bomba de aire introduce aire a través de la entrada de la cámara y lo expulsa por el lado opuesto a un caudal de 20 L/min. Este sistema experimental se probó al aire libre en un día soleado de octubre en Nanjing, al este de China.

«El dispositivo demuestra una excelente estabilidad durante seis horas, exhibiendo una potencia de enfriamiento promedio de aproximadamente 40 W/m2», dijeron los científicos. “La potencia máxima fotovoltaica alcanza hasta 120 W/m2 al mediodía sin cámara; Sin embargo, este valor disminuye ligeramente a 103,33 W/m2 cuando se cubre con la cámara. Además, la eficiencia de conversión de energía de la célula solar es del 11,42%, en comparación con el 12,92% de la célula solar desnuda”.

Tras el experimento de la vida real, el equipo realizó una simulación multifísica utilizando el software COMSOL para ver si el sistema podía mejorarse. “Los resultados de la simulación indican que mejorar el caudal de aire dentro de la cámara de aire y reducir su absortividad en la banda de luz solar puede mejorar significativamente el rendimiento. Cuando la capacidad de absorción del enfriador cae al 1%, la potencia de enfriamiento radiativo puede alcanzar hasta 68,74 W/m2”, explicaron además.

El sistema fue presentado en “Enfriamiento radiativo diurno en tándem y generación de energía solar”, publicado en Informes Celulares Ciencias Físicas. El equipo incluía científicos de China. Universidad de Aeronáutica y Astronáutica de Nanjing y el Academia China de Ciencias.

Investigadores de Estados Unidos aplicaron recientemente el enfriamiento radiativo al enfriamiento de paneles solares. Universidad Jiao Tong de Shanghái es China, Universidad Purdué en los Estados Unidos, el Instituto Catalán de Nanociencia y Nanotecnología y el Instituto de Ciencia de Materiales en España, y el Universidad de Ciencia y Tecnología de Jordania y Colegio Australiano de Kuwait.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Central Japan Railway Co. y Sekisui Chemical han revelado planes para implementar sistemas fotovoltaicos flexibles basados ​​en perovskita a lo largo de la línea del tren Tokaido Shinkansen en Japón. Están utilizando células solares de perovskita de tipo película delgadas, livianas y flexibles.

Imagen: J.R. Tokai

«como «Las barreras acústicas tienen una larga vida útil, hemos desarrollado un prototipo con células solares de perovskita que se pueden conectar y desconectar fácilmente, asumiendo que sólo las células solares serán reemplazadas durante el mantenimiento», agregó la empresa, señalando que el primer prototipo se construirá. en sus instalaciones de investigación de Komaki, donde se realizarán pruebas iniciales. “Aplicaremos vibraciones y presión del viento simulando el paso de un tren para considerar una estructura que pueda soportar el entorno ferroviario y verificar el impacto en el rendimiento de la generación de energía”.

A finales de diciembre de 2024, Química Sekisui dijo que invertiría 90 mil millones de yenes (570,64 millones de dólares) en una línea de producción solar de perovskita con una capacidad inicial de 100 MW, que comenzará a operar en 2027. También planea comercializar su tecnología de paneles solares de perovskita flexible , producida en sus instalaciones existentes. en 2025.

La inversión incluye la adquisición por 25.000 millones de JPY de una fábrica propiedad de un fabricante japonés de productos electrónicos. Afilado es Sakai, prefectura de Osaka. La adquisición incluye edificios, suministro de energía, refrigeración e instalaciones.

A finales de noviembre, Ministerio de Economía, Comercio e Industria de Japón (METI) dijo que planea implementar alrededor de 20 GW de nuevos sistemas fotovoltaicos basados ​​en Tecnología de células solares de perovskita. párrafo 2040.

El ministerio dijo que también planea apoyar a otros fabricantes japoneses en la producción de tecnologías de módulos solares de perovskita.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Científicos de los Países Bajos propusieron un nuevo plan de pruebas para reciclar el silicio procedente de paneles fotovoltaicos al final de su vida útil. Su metodología ayudó a crear diferentes categorías de objetos para reciclar silicio para la producción de nuevos lingotes, pero también demostró que la mayor parte del silicio reciclado en un futuro próximo provendrá de productos de tipo p, que difícilmente serán reutilizados en un mercado ahora dominado por módulos de tipo n.

Un grupo de investigación coordinado por el Organización Holandesa para la Investigación Científica Aplicada (TNO) ha investigado cómo las piezas limpias o los fragmentos de piezas recuperadas de módulos fotovoltaicos al final de su vida útil (EoL) podrían reutilizarse para la producción de nuevos lingotes de silicio cristalino y ha descubierto que las piezas dopadas con galio podrían ser particularmente adecuadas para este propósito.

Los científicos explicaron que el silicio de las obleas desechadas debería extraerse eliminando cualquier contaminación en sus superficies, lo que lo volvería a incluir en la categoría de materiales de alta pureza. «Los principales contaminantes son dopantes, oxígeno, carbono y quizás algo de nitrógeno», dijo el autor principal de la investigación. Bart Geerligs, dijo revistapv. «Analizamos esto principalmente desde la perspectiva del control de dopantes y resistividad, y hasta cierto punto también desde la perspectiva de otros contaminantes restantes».

En el estudio”Potencial de las células solares de silicio recicladas como materia prima para el crecimiento de nuevos lingotes.”, publicado en Progresos en energía fotovoltaicalos investigadores explicaron que su análisis abordó posibles limitaciones técnicas y económicas relacionadas, en particular, con dopantes e impurezas. También esperan que se puedan recuperar volúmenes significativos de silicio, especialmente de obleas de tipo P, a partir de 2040 aproximadamente, y que los mercados dopados con boro y galio se dividen más o menos equitativamente.

El grupo de investigación también creó una metodología para separar módulos de tipo ny de tipo p, y paneles de tipo p dopados con boro versus dopados con boro o galio. Se desarrollaron, por ejemplo, que si las células solares del módulo son policristalinas, necesariamente están dopadas con tipo p B. «Hasta donde sabemos, no ha habido producción comercial de módulos de tipo n basados ​​​​en silicio policristalino», dijeron los académicos .

Además, crearon una separación entre las piezas que tienen metalización frontal o no. También dijeron que se debe identificar el voltaje para todos los módulos, excepto aquellos basados ​​en la tecnología de celdas de contacto posterior interdigitado (IBC), y que se debe realizar una inspección visual en la parte posterior de todas las celdas. “El principio para la inspección es entonces que todas las celdas industriales de Al-BSF y PERC de tipo p tienen una metalización lateral trasera de Al combinada con almohadillas de plata locales para soldar las cintas de interconexión, y las celdas industriales de tipo n no. tienen tal combinación”, precisaron.

El equipo explicó que todo el plan de pruebas podría evitarse si una etiqueta en el panel desechado tuviera información útil. «Por ejemplo, se podría documentar que un módulo contiene células HJT (tipo n) o estar basado en células IBC de un fabricante como Sunpower o Maxeon», explicó con más detalle. «También sería muy útil si los módulos PERC mostraran visiblemente una fecha de producción porque antes de 2019, esto implicaría dopaje con boro, y después de 2022, implicaría dopaje de galio en las obleas».

«Este plan daría como resultado tres flujos de materiales», Geerligs dicho. «Estas son células dopadas de tipo n, células dopadas con boro de tipo py un flujo de células PERC monocristalinas que podrían estar dopadas con boro o con galio».

Los científicos concluyeron que reutilizar obleas de tipo p como materia prima para nuevos lingotes de tipo p no será económicamente viable, ya que las células de tipo n son ahora la tecnología dominante.

«La posible reducción de costes derivada del uso de materia prima reciclada no parece ser suficiente para compensar esto», afirmaron. “Otra posibilidad de obtener una rentabilidad mucho mayor para el reciclaje de oblea tipo p puede estar disponible con la tecnología en tándem perovskita-silicio, en cuyo caso la desventaja de eficiencia en comparación con el tipo n se reduce considerablemente y el rendimiento de la celda PERC se puede mejorar mediante un poli – Emisor de Si.”

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) y el Instituto Fraunhofer de Tecnología Ambiental, Seguridad y Energía (Fraunhofer UMSICHT) afirman que su nueva fachada combina módulos fotovoltaicos, protección contra la intemperie y aislamiento térmico. Eliminar la necesidad de una subestructura y utilizar aislamiento elaborado con materias primas sostenibles.

Imagen: Fraunhofer ISE, Mona Mühlich

Delaware revista pv Alemania

El enfoque estándar para la construcción de sistemas fotovoltaicos integrados en fachadas utiliza sistemas de montaje especializados para combinar módulos solares con fachadas estilo cortina con ventilación trasera.

Para abordar esto, Instituto Fraunhofer ISE y Fraunhofer UMSICHT han desarrollado un elemento de fachada que integra fotovoltaica, protección contra la intemperie y aislamiento térmico en una sola unidad.

Los institutos dijeron que su nuevo sistema elimina la necesidad de una subestructura adicional. Los elementos prefabricados, de 1 metro x 1,2 metros, se presentan en dos versiones con aislamiento elaborado con materias primas renovables, como fibras de cáñamo y setas.

«Ambos materiales son adecuados para su uso en fachadas en términos de comportamiento al fuego», afirma Holger Wack, jefe del grupo de desarrollo de materiales de construcción en Fraunhofer UMSICHT.

El material del hongo se puede producir a partir de residuos agrícolas, lo que lo hace muy eficiente en el uso de recursos. Ambos tipos de aislamiento están diseñados para una fácil separación de los elementos de la fachada para permitir el reciclaje.

Según se informa, esta construcción integrada reduce significativamente el uso de materiales en comparación con la energía fotovoltaica integrada en edificios (BIPV) convencional. Los elementos también se montan rápidamente y, en caso necesario, se pueden desmontar individualmente sin afectar a los componentes vecinos. Una instalación de prueba en el Instituto Fraunhofer de Física de la Construcción IBP en Holzkirchen (Alemania) demostró velocidades de montaje de menos de 1,5 horas por elemento.

Actualmente, la fachada fotovoltaica está siendo sometida a un intenso control de la potencia, la durabilidad, el comportamiento de temperatura y humedad y el rendimiento del aislamiento térmico. Los investigadores también están desarrollando una descripción del proceso digital para garantizar un diseño y montaje adecuados en futuros proyectos de construcción.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

PXP Corporation ha conseguido recientemente 1.500 millones de yenes (9,98 millones de dólares) en una ronda liderada por Softbank Corp. de Japón para seguir adelante con su plan de construir una fábrica de módulos de calcopirita de 25 MW.

PXP Corporation, una nueva empresa japonesa que desarrolla soluciones flexibles calcopirita módulos fotovoltaicos anunció que obtuvo 1.500 millones de yenes (9,98 millones de dólares) a través de una ronda de capital de riesgo Serie A liderada por SoftBank Corp. de Japón, una empresa de tecnología de medios y telecomunicaciones que cotiza en bolsa.

Calcopirita (CuGaSe2) tiene una banda prohibida de energía de 1,7 eV y hasta la fecha se ha utilizado en células solares con factor de llenado limitado y voltaje de circuito abierto.

PXP Corporation tiene planes de producir módulos de calcopirita flexibles y desarrollar una tecnología de células solares en tándem de perovskita-calcopirita. El objetivo es pasar de una línea piloto a una planta dedicada a la producción, la I+D y la formación. «Estamos planificando la planta con una capacidad de producción anual de alrededor de 25 MW», dijo el director de tecnología de PXP Corporation, Hiroki Sugimoto. revistapv.

Está previsto que se inicie la producción de módulos de calcopirita con una eficiencia del 18%. En una etapa posterior, la empresa pretende producir paneles de calcopirita con una eficiencia de conversión de energía del 19,2%, según Sugimoto.

PXP también está trabajando en células en tándem de perovskita-calcopirita, que alcanzaron una eficiencia del 26,5 % en el laboratorio a principios de este año. «Desde entonces, los esfuerzos se centran en mejorar la durabilidad», afirmó Sugimoto.

PXP Corporation ha estado demostrando durante el año pasado sus módulos de calcopirita livianos y flexibles en una variedad de aplicaciones fotovoltaicas integradas en vehículos (VIPV), como contenedores refrigerados portátiles alimentados con energía solar, un automóvil de pasajeros con energía solar integrada y un triciclo eléctrico. .

Un portavoz de Softbank dijo revistapv que la empresa objetivos utilizar la tecnología PXP en diversas aplicaciones, como alimentar centros de datos con energía limpia, suministro energía para estaciones base portátiles que se desplegarán en áreas afectadas por desastres durante emergencias Estación de plataforma de gran altitud ultraligera (HAPS)el avión propulsado por energía solar debía volar a una altitud de 20 km sobre la superficie terrestre y llevar como carga útil estaciones base de telecomunicaciones.

Los coinversores en la ronda de financiación de riesgo incluyen Solable Corporation, Kowa Optronics, Toyota Tsusho Corporation, J&TC Frontier, un vehículo de inversión conjunta entre JFE Engineering Corporation y Tokyo Century Corporation, Automobile Fund Co., Mitsubishi HC Capital Co, Yokohama Capital Co. ., Ltd. y Taro Ventures.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La startup estadounidense DartSolar dice que su nuevo accesorio de portaequipajes para vehículos eléctricos añade hasta 32 kilómetros (20 millas) de autonomía adicional por día.

Imagen: DartSolar

Delaware revista pvEE. UU.

DartSolar, con sede en Los Ángeles, ha presentado un portaequipajes solares en expansión para vehículos eléctricos, que agrega alcance sin la necesidad de enchufarlo a un cargador, según la compañía.

La baca agrega 360 W de capacidad solar cuando se guarda para conducir y puede expandirse a 1000 W en una matriz desplegada de 1 kW. El bastidor solar de bajo perfil se puede expandir en 15 segundos.

DartSolar dijo que su portaequipajes ha sido probado para su uso con varios modelos de vehículos eléctricos. Los paneles se conectan a una unidad de potencia trasera que convierte la producción solar en corriente alterna de 120 V para ser utilizada por el vehículo.

La compañía dijo que el bastidor está diseñado con paneles solares livianos y personalizados que tienen un octavo de pulgada de espesor. Apoya un enfoque de bricolaje para los propietarios, ofreciendo un plano abierto, instrucciones de reparación y piezas imprimibles en 3D para reparaciones. La baca también se puede adaptar para transportar hasta 50 libras, funcionando como una baca de vehículo convencional.

La unidad tiene actualmente un precio de $2,950. DartSolar dijo que con una vida útil de 10 años, el producto tiene un período de recuperación esperado de dos años y un retorno de la inversión cinco veces mayor.

DartSolar se fundó en 2024, con tres años de investigación que respaldan el desarrollo de la baca.

La compañía dijo que actualmente está explorando la tecnología de células solares en tándem para impulsar aún más la producción en modelos futuros.

«Con los avances en la tecnología de células solares en tándem por parte de empresas como Kaneka Corp. y Oxford PV, DartSolar está diseñando actualmente un portaequipajes solares para techo de 3.000 vatios capaz de proporcionar de 30 a 40 millas de carga por día», dijo DartSolar.

Imagen: DartSolar

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Los investigadores del instituto alemán explicaron que la degradación inducida por los rayos UV puede causar pérdidas de eficiencia y voltaje mayores de lo esperado en todas las tecnologías celulares dominantes, incluidos los dispositivos TOPCon. Los científicos esperan que las capas de nitruro de silicio puedan usarse para mejorar la estabilidad UV de TOPCon en comparación con las capas de PECVD que normalmente se utilizan en PERC y células de heterounión.

Investigadores de Alemania Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) han investigado la estabilidad frente a la exposición a los rayos UV de tres tipos de tecnologías convencionales de células solares: contacto pasivado con óxido de túnel (TOPCon), emisor pasivado y célula trasera (PERC) y heterounión (HJT), y han descubierto que todas ellas pueden sufrir una grave degradación de la tensión implícita.

Explicaron que la degradación inducida por los rayos UV (UVID) puede provocar pérdidas inesperadas de voltaje y eficiencia en el futuro, especialmente cuando pueda estar disponible un historial de UVID más amplio. “Un ejemplo destacado de esto es Degradación inducida por luz y temperatura elevada. (LeTID), lo que ha provocado pérdidas imprevistas en los módulos PERC durante la operación de campo”, afirmaron. «Informes recientes sugieren que un escenario similar podría repetirse debido a UVID para las tres arquitecturas celulares modernas».

Los efectos nocivos de la radiación UV se han asociado en gran medida en los paneles solares con encapsulantes de módulos transparentes a los rayos UV y el envejecimiento de los materiales de embalaje de los módulos, lo que conduce a la decoloración, delaminación y agrietamiento de la lámina posterior del encapsulante. En particular, la luz ultravioleta puede contribuir a la formación de ácido acético en el encapsulante del módulo, que corroe la rejilla de contacto de la celda. El rendimiento de las células solares también se ve afectado negativamente por la radiación UV mediante la generación de defectos en la superficie. Dentro de una célula solar de silicio, la luz ultravioleta puede dañar las capas de pasivación, el silicio que se encuentra debajo y la interfaz entre las dos.

«Actualmente, los encapsulantes transparentes a los rayos UV son el estándar para la parte frontal del módulo», dijo el autor principal de la investigación, Fabian Thome. revistapv. “El uso de encapsulantes que bloquean los rayos UV podría ser sin duda una estrategia para reducir la UVID, pero esto tiene el costo de una menor eficiencia del módulo. Sabemos de algunos fabricantes que ya utilizan esta estrategia. Parece ser una buena solución intermedia hasta que la UVID se resuelva a nivel celular”.

En el estudio”Degradación inducida por rayos UV de células solares industriales PERC, TOPCon y HJT: ¿el próximo gran desafío de confiabilidad?”, publicado en RRL Solarlos investigadores explicaron que su análisis demostró células solares tanto comerciales como de laboratorio, sin revelar los nombres de los fabricantes. Los dispositivos fueron expuestos a la radiación de lámparas UV-340 sin cobertura.

«Para establecer una conexión entre las pruebas de laboratorio y la aplicación de campo, analizamos datos resueltos específicamente de un sitio de pruebas en el desierto de Negev, Israel, desde 2019», dijeron. «En la secuencia de prueba UV, tres células por grupo fueron expuestas a la radiación UV desde el frente y dos desde atrás, con los respectivos lados opuestos cubiertos».

Las pruebas demostraron que la exposición trasera generaba menos UVID que la exposición frontal, y todas las tecnologías sufrían pérdidas de voltaje superiores a 5 mV después de 60 kWh·m.2. “Después de la exposición a los rayos UV, la recombinación adicional (una medida para la formación de defectos) fue más pronunciada en PERC que en TOPCon; pero la pérdida de voltaje fue comparable”, dijo Thome. “Esto se debe a que TOPCon tiene una mayor calidad de pasivación y por lo tanto ‘siente’ incluso pequeñas cantidades de defectos. Cuanto mayor sea la eficiencia inicial, mayor será la sensibilidad incluso a pequeñas cantidades de defectos adicionales”.

El análisis también mostró que las capas de pasivación a base de óxido de aluminio (AlOx) y nitruro de silicio (SiNy), que se depositan en células TOPCon mediante deposición de capas atómicas (ALD), pueden mejorar la estabilidad UV de estos dispositivos en comparación con las capas específicamente utilizadas en células PERC y HJT, que se depositan a través de plasma mejorado deposicion quimica de vapor (PECVD).

“Los componentes comunes a las tres tecnologías celulares también pueden ser importantes para la estabilidad UV. «Un ejemplo sería el índice de refracción y el espesor de las capas de nitruro de silicio, que determinan la dosis efectiva de UV que llega al silicio», concluyó Thome.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El minorista suizo Lehner Versand genera el 24,5% de las necesidades energéticas de sus edificios gracias a un proyecto de renovación que agregó 109 kW de capacidad de energía solar fotovoltaica a su fachada. El conjunto fotovoltaico tiene un efecto de lentejuelas, posible gracias a módulos de vidrio serigrafiados y una novedosa subestructura de muro cortina.

El director de proyectos solares suizo, Felix & Co Windgate, añadió 109 kW de capacidad fotovoltaica integrada en edificios (BIPV) a la fachada de una propiedad del minorista suizo Lehner Versand, como parte de un proyecto de renovación más amplio que aumentó la altura del edificio en 12 metros.

La ampliación supuso 866 m2 de módulos de vidrio coloreado serigrafiado suministrados por Ertec Solarun fabricante de módulos austriaco. La nueva fachada solar activa tiene una apariencia de lentejuelas gracias a la subestructura del muro cortina y los paneles de vidrio de colores. “Al incorporar diferentes inclinaciones en los elementos de la fachada, la envolvente del edificio está elegantemente diseñada. Esto también crea un juego estético de luces, dando a la estructura una vitalidad natural y una rica coloración”, dijo un portavoz de Windgate. revistapv.

El edificio ya contaba con una planta en cubierta con paneles solares de silicio convencional, que combinado con la nueva instalación ahora proporciona 114.560 kWh anuales, cubriendo el 24,5% de las necesidades del edificio, según un comunicado del Premio Solar Suizo 2024.

Según el portavoz de Windgate, existen beneficios prácticos para este tipo de instalación que incluye módulos instalados en las fachadas orientadas al sur, este y oeste, especialmente en invierno. “En general, el rendimiento energético de los sistemas de fachada es menor que el de las instalaciones en tejados debido al ángulo de incidencia de la luz solar menos favorable en comparación con los módulos fotovoltaicos en el tejado. Sin embargo, hay una ventaja significativa: los ángulos de luz solar más bajos durante el invierno se aprovechan de manera más efectiva, lo que mejora la confiabilidad del suministro de energía en invierno y aumenta el autoconsumo”, dijeron.

El equipo del proyecto logró el efecto de lentejuelas variando la dirección de inclinación de los módulos instalados en la subestructura del muro cortina. Fue una solución desarrollada, diseñada y fabricada por Ecolite, una empresa suiza de materiales de construcción. Los soportes, que sostienen los paneles en cuatro ángulos diferentes, se entregaron como subestructuras premontadas y se fijaron in situ a los tramos de acero.

“Nuestra tarea era adaptar un sistema de suspensión existente a los requisitos del proyecto de Lehner Versand de tal manera que se pudiera salvar los grandes claros entre las vigas de acero verticales de la ampliación y luego se pudiera montar la suspensión para los módulos fotovoltaicos inclinados. correctamente en términos de dilatación y estática”, dijo Samuel Bregenzer, fundador y gerente de Ecolite. revistapv.

El proyecto recibió recientemente el premio Schweizer Solarpreis 2024 en la categoría de rehabilitación de edificios.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Aritra Ghosh, académica de la Universidad de Exeter, cuenta revistapv Se requiere un enfoque multidisciplinario para desbloquear todo el potencial de la agrovoltaica. Al analizar un nuevo artículo que compara los sistemas agrovoltaicos estáticos y de seguimiento en el Reino Unido, el investigador sostiene que es necesaria una mejor comprensión de los microclimas bajo los módulos y cómo la energía fotovoltaica afecta la bioquímica de los cultivos.

Según la investigadora británica Aritra Ghosh, se necesita una mejor comprensión de los microclimas y los efectos de la energía fotovoltaica aérea en la biología de los cultivos para mejorar la eficiencia del uso de la tierra en las instalaciones agrovoltaicas.

hablando con revistapv Sobre la publicación de un nuevo artículo que compara los efectos de las instalaciones agrovoltaicas estáticas y montadas en rastreadores, Ghosh dijo que los académicos especializados en fotovoltaica todavía tienen lagunas de conocimiento en lo que respeta a la ciencia de los cultivos, “y la gente de los cultivos no entienden el aspecto fotovoltaico. Necesitamos más tiempo para desarrollarnos, creo que eso es cierto para Alemania, Francia, Europa y cualquier lugar. No tienen los datos”.

Ghosh es profesor de la Universidad de Exeter y autor de «Evaluación de seguimiento de sistemas agrivoltaicos basados ​​en energía solar fotovoltaica bifacial en todo el Reino Unido”, publicado en energia solar. El estudio utiliza herramientas de simulación para investigar cómo se puede integrar un sistema fotovoltaico en granjas que cultivan patatas en el Reino Unido. En el documento se incluyen ubicaciones que cubren las principales regiones del Reino Unido, en el que los investigadores utilizaron el software de diseño PVsyst en combinación con un sistema de apoyo a la toma de decisiones para la transferencia de agrotecnología (DSSAT) para producir datos de energía y producción agrícola para instalaciones hipotéticas.

Las simulaciones encontraron disparidades significativas en la irradiancia solar, la temperatura y las precipitaciones en los lugares estudiados, lo que influyó en la electricidad y la producción agrícola. A pesar de esto, surgieron algunas tendencias. Los módulos fotovoltaicos bifaciales montados sobre sistemas de seguimiento son el mejor tipo de instalación para la producción de energía solar, según el modelo. El estudio encontró que los paneles bifaciales de 440 W montados en un seguidor generaban un promedio de 24,6% más energía que los sistemas bifaciales estáticos.

Sin embargo, los rastreadores también tuvieron un efecto marcado en el rendimiento de los cultivos. Una instalación compuesta por paneles monofaciales en una instalación de seguimiento modelada para Birmingham dio como resultado rendimientos de cultivos tan bajos como 65,57% en comparación con una instalación bifacial estática con la misma cobertura de suelo.

Las instalaciones agrovoltaicas bifaciales estáticas fueron las instalaciones más positivas para el rendimiento de los cultivos. En términos de calificación de eficiencia del suelo (LER), las instalaciones estáticas también resultaron ser las más eficientes para extraer valor de un área, aunque LER no es un instrumento perfecto para la toma de decisiones en materia de agrovoltaica, según Ghosh. En cambio, el investigador afirmó que se requiere una comprensión más completa de la relación entre las instalaciones fotovoltaicas y el rendimiento de los cultivos para crear una solución que pueda informar a los agricultores qué funcionará mejor en sus tierras.

«Se trata de dos ciencias diferentes», dijo Ghosh. “Tenemos que entender cómo reaccionan los cultivos con la naturaleza porque eso afecta el rendimiento fotovoltaico. Según tengo entendido, algunos cultivos dan como resultado una temperatura ambiente más refrescante y otros no. Esto tendrá un impacto adicional en la generación de energía porque la energía fotovoltaica tiene un gradiente de temperatura. Por eso necesitamos una mayor interacción entre estas dos ciencias. No es tan simple, pero sí es factible”.

Ghosh agregó que a medida que continúe la investigación, será posible desarrollar una aplicación o software para brindar a los agricultores recomendaciones adaptadas a su localidad.

“Tal vez después de unos años podamos producir algún tipo de aplicación donde los agricultores no tengan que entender toda la ciencia, sino que necesiten conocer los elementos clave y la ciencia se realizará en el fondo. Supongamos que queremos cultivar patatas, pondremos algunos elementos básicos y eso les dirá cuál será la mejor solución. Todavía necesitamos más tiempo para eso, pero no se trata sólo de la irradiación solar, hay muchos factores aquí”, afirmó.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La empresa alemana de equipos fotovoltaicos Coatema Coating Machinery afirma que sus soluciones de procesamiento rollo a rollo abarcan desde el laboratorio o el piloto hasta la escala de producción.

Proveedor de equipos de fabricación Maquinaria de recubrimiento Coatema ha lanzado una línea de productos rollo a rollo para tecnologías flexibles orgánicas, de perovskita y de células solares sensibilizadas por colorantes (DSSC).

Los productos de la empresa alemana admiten anchos de banda de trabajo de hasta 1.000 mm, así como una herramienta más pequeña para ajustes hoja a hoja.

El mayor de esta línea de productos fotovoltaicos rollo a rollo es Click&Coat, un modelo con anchos de banda de trabajo de 300 mm, 500 mm y 1.000 mm. Está diseñado para personalizarse con más de 30 módulos de proceso diferentes, incluidos secadores, laminadores, procesos láser, corte y equipos de control de calidad.

Sólo para el recubrimiento, hay más de 20 módulos disponibles, incluidos huecograbado, rasqueta, recubrimiento por ranura, pantalla rotativa, recubrimiento de cortina y serigrafía. En cuanto al secado, la empresa ofrece otras opciones, como aire caliente, infrarrojos, reticulación UV y secado por chorro.

El equipo está en uso en el Organización de Investigación Científica e Industrial del Commonwealth (CSIRO) en Australia, según Thomas Kolbusch, director de marketing y tecnología de Coatema. Otro ejemplo es Tecnologías de Electrónica Orgánica (OET) en Grecia, donde el fabricante de OPV está desarrollando soluciones para los mercados de agrovoltaica, automoción y materiales de construcción.

OET participa en un proyecto de la Unión Europea conocido como Flex2Energy, cuyo objetivo es integrar sistemas de control de calidad y trazado láser en línea dentro del proceso rollo a rollo, para su uso en una línea de ensamblaje de módulos automatizados construidos por una empresa española de maquinaria. Asamblea Mondragón.

Otros clientes de la industria fotovoltaica se encuentran en Brasil, América del Norte y Europa. «Estamos viendo que los fabricantes de perovskita y fotovoltaica orgánica están comenzando a fabricar productos para aplicaciones de Internet de las cosas sin baterías, por ejemplo», dijo Kolbusch. revistapv

De cara al futuro, Kolbusch ve oportunidades de mercado en la agrovoltaica. “En Grecia, España y Alemania existe interés por parte de las agencias gubernamentales en las aplicaciones de invernadero debido al beneficio de ahorro de espacio y al potencial para producir alimentos y energía con la misma infraestructura. Existe un enorme potencial para agregar grandes volúmenes de capacidad solar en áreas donde hay muchos invernaderos”, afirmó.

La energía fotovoltaica flexible tiene características que le dan una ventaja competitiva en comparación con la energía fotovoltaica convencional para su uso en invernaderos. “Es más liviano, de menor costo, más fácil de instalar y de mantener limpio. También produce electricidad durante más horas al día, arrancando y deteniéndose más tarde que la energía solar convencional”, afirmó Kolbusch.

Coatema también dispone de dos sistemas rollo a rollo más pequeños: el Easycoater para impresión hoja a hoja en tamaños estándar A4 y A0, y el Smartcoater con anchos de banda de hasta 300 mm, adecuado para laboratorio o pequeña producción piloto.

Coatema, fundada en 1974, diseña y produce equipos hoja a hoja y rollo a rollo para recubrimiento, impresión y laminación. Tiene productos para la fabricación de baterías, energía solar fotovoltaica, dispositivos médicos, pilas de combustible, hidrógeno verde y electrónica impresa.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!