Imagen representacional. Crédito: Canva

Akuo está previsto que inaugure su segunda gran instalación solar en Portugal, la planta de energía solar de Margalha.

Con una capacidad instalada de 147 MWp, la planta de Margalha contribuirá significativamente a reducir las emisiones de carbono, evitando más de 45.000 toneladas métricas de CO2 al año. El proyecto también ayudará a Gavião, un municipio con más de 4.000 habitantes, a convertirse en una comunidad de energía positiva.

Actualmente en construcción, el proyecto de seguidor solar Margalha pone de relieve el compromiso de Akuo con el avance de soluciones energéticas sostenibles en Portugal. Ubicada estratégicamente en la región del Alentejo, conocida por su alto rendimiento solar, la planta subraya el potencial de la zona como centro de energía renovable.

Eric Scotto, presidente y cofundador de Akuo, dijo: “2024 marca el crecimiento de Akuo en Portugal y su mayor arraigo en el país. Desde 2019, Akuo ha estado trabajando duro, de la mano de las partes interesadas locales y nacionales: Hoy nos sentimos abrumados al ver que nuestros proyectos se hacen realidad e inyectan electricidad en beneficio de los ciudadanos portugueses. MEAG vuelve a ser un socio clave y digno de confianza y espero continuar juntos este viaje portugués”.

Michael Wieser, gerente senior de inversiones de MEAG, agregó: “Tras la finalización exitosa de Santas, también financiada por MEAG, estamos encantados y orgullosos de fortalecer aún más nuestra cooperación con Akuo actuando como la única parte financiera de Margalha. Nos gustaría agradecer a Akuo por su continua asociación ya todas las partes involucradas en estos dos proyectos importantes”.

Los proyectos en curso de Akuo, como Margalha, se alinean perfectamente con los audaces objetivos de energía renovable de Portugal, reforzando su posición a la vanguardia del movimiento de energía limpia.

13 de diciembre de 2024: Canadá debería centrarse en la construcción de megaproyectos solares masivos a escala de servicios públicos para iniciar su transición a la energía verde, según un nuevo informe del Grupo de Investigación de Energía Limpia de la Universidad Simon Fraser.

La recomendación proviene de un papel nuevo publicado en la revista brujula solar que analiza el estado actual de la energía solar y compara los beneficios de proyectos a gran escala y enfoques más pequeños y descentralizados, como hogares individuales y edificios comerciales que instalan sus propios paneles solares.

«La energía solar tiene grandes ventajas sobre la eólica, la geotérmica y la nuclear como fuente de energía renovable», afirma Anil Hira, director del Grupo de Investigación de Energía Limpia (CERG) y profesor de ciencias políticas en la SFU. ‘El costo de instalación de paneles solares ha disminuido en la última década, aproximadamente un 90 por ciento, y es una parte vital de los aviones energéticos en muchos países; Sin embargo, en Canadá, ese potencial apenas se ha aprovechado. Si bien la energía solar representa aproximadamente el cuatro por ciento de la generación eléctrica mundial, en Canadá sólo representa el 0,5 por ciento. Centrarse en proyectos solares a escala de servicios públicos podría tener un impacto significativo en partes de Canadá, incluida Columbia Británica. La energía solar puede ayudarnos a diversificar nuestra combinación energética para que no dependamos tanto de la energía hidroeléctrica y reduzca los problemas de intermitencia del viento.’

El documento sugiere que esto se debe a que gran parte de la política en torno a la energía solar se ha centrado en la generación residencial y comercial descentralizada ya pequeña escala. Suelen ser victorias políticas fáciles para los responsables de la formulación de políticas porque recompensan a los individuos ya las empresas por invertir en la tecnología para su propio beneficio y reducir los dolores de cabeza por el uso del suelo, ya que los paneles se instalan principalmente en edificios existentes.

Sin embargo, los autores sostienen que este enfoque no genera suficiente electricidad para lograr una transición verde, fragmenta el sistema eléctrico y plantea preocupaciones sobre la equidad porque no todas las zonas son adecuadas para la energía solar y es probable que los propietarios de viviendas adinerados y las grandes empresas son los únicos. dispuesto a realizar inversiones a largo plazo en paneles y baterías. Más claramente, los costos de la energía solar a gran escala son aproximadamente un 64 por ciento más baratos que los de las instalaciones residenciales y un 50 por ciento más baratos que las instalaciones solares comerciales, en promedio.

Los proyectos a escala de servicios públicos conllevan sus propios desafíos, incluidos costos iniciales masivos, oposición pública y política y el espacio requerido para vastos campos de paneles solares, pero el informe encontró que muchas de las preocupaciones sobre el uso de la tierra tienden a ser exageradas y hay espacio para soluciones innovadoras que respalden usos Múltiples de los terrenos donde se instalan paneles solares. Los beneficios, argumentan, superan con creces los desafíos, incluidos. De hecho, la superficie de terreno necesaria para que la energía solar haga una contribución importante a nuestra combinación eléctrica es mucho menor de lo que uno podría pensar. Los autores recomiendan utilizar tierras públicas para las megagranjas para reducir los efectos NIMBY.

El estudio señala algunos ejemplos de proyectos solares en todo el mundo, incluido Estados Unidos.

El proyecto Solar Star en California cuenta con 1,7 millones de paneles repartidos en 13 kilómetros y genera energía suficiente para 255.000 hogares (579 megavatios). El plan de energía Mesquite Solar 1 en Arizona proporciona 150 megavatios. Su construcción costó 600 millones de dólares en 2013, y gran parte de esa cantidad provino de un préstamo de 337 millones de dólares respaldado por el Departamento de Energía de Estados Unidos.

Se necesitan políticas proactivas y respaldo financiero de los altos gobiernos para aprovechar el potencial de la transición a la energía limpia, concluye el informe.

«Si bien las diferentes escalas de implementación tienen un papel que desempeñar, desde una perspectiva de eficiencia del capital, se deben priorizar las políticas que favorecen el rápido despliegue de proyectos a escala de servicios públicos en ubicaciones óptimas con luz solar», dice Prasanna Krishnan , coautora del CERG. . ‘Todos los factores juntos sugieren la necesidad de políticas nacionales que ayuden a aliviar los obstáculos al desarrollo de las granjas solares y de almacenamiento a gran escala, incluida una reforma de interconexión muy necesaria. El apoyo a tales esfuerzos tendría un efecto transformador en nuestros sistemas eléctricos.’

Fuente: Universidad Simón Fraser

————————————–

Próximas conferencias organizadas por SGO:

6.ª Cumbre sobre infraestructura de carga de vehículos eléctricos – América del Norte: Este28 y 29 de enero de 2025 | Atlanta

V2X Foro de Negocios, Políticas y Tecnología del Reino Unido18 y 19 de febrero de 2025 | londres

5to Foro de Negocios, Políticas y Tecnología V2G – Primavera22-24 de abril de 2025 | norte de california

Foro de innovación en IA de servicios públicos13 y 14 de mayo de 2025 | chicago

Simposio y exposición de ciberseguridad ICS/SCADA3 y 4 de junio de 2025 | chicago

Séptima Cumbre de Infraestructura de Carga de Vehículos Eléctricos – América del Norte15-17 de julio de 2025 | chicago

12 de diciembre de 2024 – En una red eléctrica sustentada parcialmente por turbinas eólicas, paneles solares y turbinas hidroeléctricas, los patrones meteorológicos y climáticos pueden afectar significativamente la cantidad de energía que se produce. Y a medida que se agreguen más energía eólica y solar a la red, las empresas de servicios públicos deberán comprender cómo los patrones estacionales en el clima y el tiempo pueden causar cambios en la generación de energía.

es nueva investigacionun equipo del Departamento de Energía Laboratorio Nacional del Noroeste del Pacífico muestra que las sequías de energía compuesta, o períodos de baja generación de energía a partir de energía solar, eólica e hidroeléctrica simultáneamente, pueden durar hasta cinco meses y ocurrir con mayor frecuencia en el otoño.

Es importante destacar que «las sequías de energía compuestas no necesariamente causan apagones, y los consumidores pueden no darse cuenta de que están ocurriendo», dijo Cameron Bracken, científico terrestre de PNNL y autor principal del artículo. Y, de hecho, el equipo descubrió que en el oeste de Estados Unidos, la gran cantidad de generación no renovable significa que incluso en el peor de los casos de sequía energética, todavía hay suficiente energía disponible para satisfacer la demanda.

«La pregunta entonces es sobre el costo de la energía y cómo implementar efectivamente el almacenamiento de energía», dijo Bracken. «Durante una demanda energética compuesta, las empresas de servicios públicos tendrían que utilizar más energía procedente de la quema de combustibles fósiles para satisfacer la demanda o comprar energía en el mercado».

Y quemar combustibles fósiles cuesta más y emite más dióxido de carbono. Saber cuándo podría ocurrir una sequía de energía compuesta y cuánto podría durar, permite a los operadores de servicios públicos no solo planificar cómo proporcionar energía de manera rentable a los consumidores, sino también cómo invertir en almacenamiento de energía.

Bracken presentó la investigación el 10 de diciembre en la reunión anual de la Unión Geofísica Americana en Washington, DC. El equipo también presentó un artículo en la revista Applied Energy.

Cómo afectan las estaciones a la generación de energía.

Bracken y sus colegas investigaron previamente las sequías de energía compuestas en un artículo publicado el otoño pasado, donde encontraron que las sequías de energía en la energía solar y eólica pueden durar casi una semana. Debido a que la energía solar y la eólica pueden cambiar en cuestión de minutos (debido a una nube que pasa sobre un campo de paneles solares o al amainar el viento), estas sequías de energía afectan las operaciones minuto a minuto de una empresa de servicios. públicos.

Pero la energía eólica y solar no son las únicas fuentes de energía renovables que dependen de ritmos naturales.

La generación de energía hidroeléctrica responde a patrones climáticos a largo plazo de estaciones secas y húmedas, dijo Bracken. En el oeste de Estados Unidos, el derretimiento de la capa de nieve en el verano impulsa un aumento en la generación de energía hidroeléctrica durante los meses más cálidos, por ejemplo. En la parte oriental del país, la energía hidroeléctrica no depende tanto de la capa de nieve de las montañas sino de las lluvias estacionales.

“Los ciclos hidrológicos duran meses, no días ni horas. Queríamos saber en qué medida las sequías energéticas podrían afectar a la red a escala estacional, lo que significa que debemos investigar cómo los fenómenos climáticos afectan la generación de energía hidroeléctrica”, dijo Bracken. Comprender un patrón estacional de sequías de energía compuesta permitiría a las empresas de servicios públicos planificar con anticipación en una escalada de tiempo más larga.

De manera similar al artículo anterior, Bracken y sus coautores analizaron un período de datos climáticos históricos entre 1982 y 2019 para encontrar momentos nublados en los que la energía solar podría caer, días estancados en los que el viento podría no soplar y períodos secos que podrían disminuir la generación de energía hidroeléctrica. También investigaron patrones climáticos como El Niño y La Niña para ver si existía una variación con las sequías energéticas.

Luego, el equipo aplicó esos datos a la infraestructura energética actual. Es decir, si durante esos 40 años existiera la cantidad actual de turbinas eólicas, paneles solares e instalaciones hidroeléctricas, ¿con qué frecuencia y durante cuánto tiempo se habrían producido sequías energéticas compuestas?

El equipo descubrió que las sequías de energía compuesta habrían ocurrido con mayor frecuencia en el otoño y podrían haber durado hasta cinco meses. Esto refleja un período en el que los días comienzan a acortarse (lo que lleva a menos luz solar) y el deshielo del verano disminuye.

Durante la peor de estas sequías de energía compuesta, los investigadores encontraron que las emisiones de dióxido de carbono podrían aumentar hasta un 20 por ciento a medida que las empresas de servicios públicos cambiaran a combustibles fósiles para reemplazar la generación perdida de energía eólica, solar e hidroeléctrica. También descubrieron que los precios de la energíaon aumentan significativamente en el noroeste de Estados Unidos, que dependen más de la energía hidroeléctrica que otras partes del país.

La buena noticia es, sin embargo, que en un modelo de Western Interconnect la producción de energía nunca cayó tanto como para no poder satisfacer la demanda, afirmó Bracken. Esto se debe en parte a que la red eléctrica del país alberga suficientes tipos diferentes de fuentes de energía que no todas se ven afectadas al mismo tiempo. Otra razón para esta resiliencia es que si ocurre una sequía energética compuesta en una parte del país, es poco probable que una región vecina experimente la misma caída en la generación. Con la transmisión regional, las regiones vecinas pueden enviar energía donde sea necesario.

Implicaciones para el almacenamiento de energía y las emisiones.

Los investigadores también mostraron cómo las empresas de servicios públicos podrían utilizar la información sobre sequías energéticas para informar sus operaciones. El equipo eligió los cinco peores meses de sequía energética durante el período de estudio, cuando los patrones climáticos provocaron una caída simultánea de la energía solar, eólica e hidroeléctrica, y analizó esos datos a través de un modelo de las operaciones anuales de Western Interconnection.

«Este estudio de caso puede ayudar a que las empresas de servicios públicos tengan una idea de cuándo la generación de todos sus recursos intermitentes es la más baja que hemos observado históricamente», dijo Bracken.

Con el escenario modelado, las empresas de servicios públicos pueden considerar cuánto almacenamiento de energía podrían instalar para amortiguar algunos efectos de una caída simultánea de la energía eólica, solar e hidroeléctrica.

El nuevo trabajo ofrece una base para que las empresas de servicios públicos comiencen a pensar de una nueva manera sobre cómo gestionar y planificar una red eléctrica descarbonizada. Y en investigaciones futuras, el equipo planea investigar cómo el cambio climático afectará la frecuencia y duración de las sequías energéticas estacionales compuestas.

Fuente: Laboratorio Nacional del Noroeste del Pacífico

————————————–

Próximas conferencias organizadas por SGO:

6.ª Cumbre sobre infraestructura de carga de vehículos eléctricos – América del Norte: Este28 y 29 de enero de 2025 | Atlanta

V2X Foro de Negocios, Políticas y Tecnología del Reino Unido18 y 19 de febrero de 2025 | londres

5to Foro de Negocios, Políticas y Tecnología V2G – Primavera22-24 de abril de 2025 | norte de california

Foro de innovación en IA de servicios públicos13 y 14 de mayo de 2025 | chicago

Simposio y exposición de ciberseguridad ICS/SCADA3 y 4 de junio de 2025 | chicago

Séptima Cumbre de Infraestructura de Carga de Vehículos Eléctricos – América del Norte15-17 de julio de 2025 | chicago

11 de diciembre de 2024: modelo del sistema eléctrico global de Wärtsilä, publicado en el Informe Encrucijada hacia el cero netocompara dos caminos desde el año 2025 al 2050 con el objetivo de reducir las emisiones de gases de efecto invernadero y limitar el calentamiento global, según los objetivos del Acuerdo de París. En la primera vía, sólo se añaden a la combinación energética las energías renovables, como la energía eólica y solar, y el almacenamiento de energía. En la segunda vía, también se agregan al sistema tecnologías de generación de energía de equilibrio, que pueden acelerarse rápidamente cuando sea necesario para respaldar las energías renovables intermitentes.

El modelo muestra que un sistema de energía que incluye energía de equilibrio tiene ventajas significativas en términos de reducción de costos y CO2. El modelo revela que esta vía generaría ahorros acumulativos de 65 billones de euros para 2050 en comparación con una vía exclusivamente de energías renovables, debido a que se necesita menos capacidad renovable. Esto supondría una media de 2,5 billones de euros al año, lo que equivale a más del 2 % del PIB mundial de 2024.

El informe destaca que la eficacia de las energías renovables se puede maximizar si se apoyan en plantas de energía equilibradas, que son clave para ampliar la energía renovable.

Hallazgos clave

1. Costes reducidos: el estudio muestra que, en comparación con una vía basada únicamente en energías renovables y almacenamiento de energía, el despliegue de centrales eléctricas de equilibrio reducirá el coste de los futuros sistemas energéticos hasta en un 42%, lo que equivale a 65 billones de euros.

2. Reducción de emisiones: Agregar energía de equilibrio puede reducir las emisiones totales acumuladas de CO2 del sector energético de aquí a 2050 en un 21% (19 Gt), en comparación con la ruta de energías renovables y almacenamiento únicamente.

3. Menos desperdicio de energía: el modelo muestra que el uso de energía de equilibrio permite una mayor optimización del sistema eléctrico, lo que resulta en un 88% menos de desperdicio de energía debido a la reducción de energías renovables para 2050, en comparación con una vía de energía renovable y de almacenamiento exclusivo de energía. En total, se evitarían 458.000 TWh de recorte, cantidad suficiente para alimentar a todo el mundo con el consumo eléctrico actual durante más de 15 años.

4. Menos capacidad renovable y tierra necesaria: al agregar plantas de energía de equilibrio, podemos reducir a la mitad la capacidad renovable y la tierra necesaria para cumplir nuestros objetivos de descarbonización.

«Nuestro modelo muestra que existe un camino viable y rentable para descarbonizar el sector energético», afirmó Håkan Agnevall, director ejecutivo y presidente de Wärtsilä: «Tenemos todas las tecnologías que necesitamos para acelerar el cambio hacia sistemas energéticos basados ​​en energías renovables. pero volverse ecológico no es blanco o negro Los sistemas de energía renovables requieren flexibilidad en varias formas: el almacenamiento de energía junto con plantas de energía de equilibrio que utilizan gas como combustible de transición, antes de que estén disponibles los combustibles sostenibles, son fundamentales. para alcanzar los objetivos climáticos globales.

Llamados a la acción para el sector eléctrico

Las acciones decisivas de todo el sector eléctrico son cruciales para lograr una transición energética de bajo costo y bajas emisiones en línea con el Acuerdo de París 2050. En lugar de centrarse únicamente en la aceleración del desarrollo de energías renovables, se debe implementar un pensamiento holístico a nivel de sistema al invertir y planificar sistemas de energía.

1. Permitir la expansión acelerada de las energías renovables y las tecnologías de equilibrio para garantizar una electricidad asequible

  • Permitir una rápida expansión de las energías renovables mediante la mejora de los sistemas de transmisión, la racionalización de los procesos de obtención de permisos y las inversiones en interconectores regionales.
  • Expandir rápidamente las tecnologías de equilibrio de corta y larga duración para garantizar la confiabilidad y resiliencia de la red. Juntas, estas tecnologías apoyan el rápido crecimiento de la energía renovable, reducen la dependencia de activos inflexibles, como las plantas de carbón, y aceleran la reducción de emisiones.
  • Movilizar financiamiento para asegurar el desarrollo de proyectos de energía renovable y de equilibrio a la escala y velocidad necesarias.

2. Rediseñar los mercados eléctricos para incentivar la flexibilidad

  • Reformar las estructuras del mercado eléctrico para apoyar una mayor integración de la energía renovable variable. Se debe incentivar el equilibrio para proporcionar la flexibilidad esencial para optimizar los sistemas de energía renovable.
  • Aumente la granularidad del despacho a una resolución de 5 minutos en los mercados mayoristas de energía. Plazos más cortos y precisos para los ajustes de precios y oferta respaldarán la integración variable de energías renovables e incentivarán plantas de energía de equilibrio flexible que puedan responder rápidamente a los cambios en la demanda de electricidad.
  • Introducir nuevos servicios auxiliares para garantizar la estabilidad de la red. La necesidad de servicios auxiliares aumenta con una mayor penetración de las energías renovables, y el suministro puede cooptimizarse con los requisitos energéticos y de equilibrio y proporcionarse mediante tecnologías de equilibrio.
  • Establecer modelos de ingresos financiables para centrales eléctricas de equilibrio con pocas horas de funcionamiento, incluidos mecanismos como pagos de capacidad vinculados a la flexibilidad y precios de escasez.

3. Elija las tecnologías adecuadas preparadas para el futuro y prepárese para los combustibles sostenibles

  • Seleccione tecnologías de equilibrio que estén preparadas para el futuro y listas para la introducción de combustibles sostenibles para descarbonizar completamente el sector energético a partir de mediados de la década de 2030.
  • Apoyar un rápido aumento de las energías renovables y permitir la eliminación gradual de tecnologías heredadas, mediante el uso de gas natural como combustible de transición para plantas de energía de equilibrio flexible. Cerrar la transición con equilibrio de gas puede reducir más del 75% de las emisiones anuales de CO2 del sector energético para 2035 (en comparación con el nivel de 2023).
  • Prepárese para la introducción de combustibles sostenibles mediante la creación de la experiencia y la infraestructura necesaria para garantizar una transición fluida hacia un sector energético totalmente descarbonizado en el futuro. La competitividad o la paridad de costos de los combustibles sostenibles requerirán acciones políticas, que podrían ser en forma de subsidios, regulaciones, impuestos al carbono o una combinación de estos.

«Aunque tenemos más energía renovable que nunca en nuestras redes, no es suficiente por sí sola», afirmó Anders Lindberg, presidente de Wärtsilä Energy y vicepresidente ejecutivo: «Para lograr un futuro con energía limpia, nuestro modelo muestra que la flexibilidad es esencial. Necesitamos actuar ahora para integrar los niveles y tipos correctos de tecnologías de equilibrio en nuestros sistemas de energía. Esto significa eliminar rápidamente los activos inflexibles y hacer la transición a combustibles sostenibles. niveles más altos de energía renovable.’

Fuente: Wärtsilä

————————————–

Próximas conferencias organizadas por SGO:

6.ª Cumbre sobre infraestructura de carga de vehículos eléctricos – América del Norte: Este28 y 29 de enero de 2025 | Atlanta

V2X Foro de Negocios, Políticas y Tecnología del Reino Unido18 y 19 de febrero de 2025 | londres

5to Foro de Negocios, Políticas y Tecnología V2G – Primavera22-24 de abril de 2025 | norte de california

Foro de innovación en IA de servicios públicos13 y 14 de mayo de 2025 | chicago

Simposio y exposición de ciberseguridad ICS/SCADA3 y 4 de junio de 2025 | chicago

Séptima Cumbre de Infraestructura de Carga de Vehículos Eléctricos – América del Norte15-17 de julio de 2025 | chicago

El último informe del Programa de Sistemas de Energía Fotovoltaica (PVPS) de la Agencia Internacional de Energía (AIE) dice que la industria fotovoltaica integrada en edificios (BIPV) se enfrenta a desafíos importantes debido a la falta de procedimientos claros de prueba y certificación. Dice que el consenso internacional y la armonización de los procesos de certificación serán cruciales para la adopción generalizada de la tecnología.

Existe una necesidad urgente de armonizar las normas de prueba y certificación para la energía fotovoltaica integrada en edificios (BIPV), según el último informe del Programa de sistemas de energía fotovoltaica de la Agencia Internacional de Energía (AIE-PVPS).

El informe de la Tarea 15 del programa, Avanzando en la estandarización de BIPV: abordando las brechas regulatorias y los desafíos de desempeñodice que dichas normas deben abordar los requisitos electrotécnicos y relacionados con la construcción y son cruciales para reducir costos, simplificar la entrada al mercado y promover la cooperación internacional.

El informe explica que el crecimiento de BIPV «no siempre ha cumplido las expectativas» y todavía sólo ocupa un nicho en el sector solar, con un mercado estimado actualmente entre 300 MW y 500 MW en Europa y alrededor de 2 GW a nivel mundial.

Cita los desafíos de integración, la falta de estandarización y rentabilidad como razones principales para la adopción más lenta de BIPV, así como la educación limitada entre los profesionales de la construcción, la escasez de personas capacitadas que combinan la experiencia fotovoltaica y de construcción y la competencia de las soluciones tradicionales.

«Esto también está relacionado con el hecho de que existe una clara diferencia en la estandarización entre los dos sectores de edificios y equipos eléctricos», dice el informe. «Si bien la energía fotovoltaica tradicional cuenta con un conjunto completo de estándares, BIPV aún busca pruebas estandarizadas que abarquen tanto las necesidades de la energía fotovoltaica como las de construcción y eviten la duplicación de pruebas similares».

El informe explica que la regulación BIPV a nivel internacional todavía se aborda principalmente mediante las normas IEC para la parte eléctrica y las normas ISO para la parte de construcción. Dado que para obtener la validación y certificación de sus productos, los fabricantes de BIPV deben realizar pruebas y seguir los procedimientos de cumplimiento establecidos por ambos sectores, lo que puede generar mayores costos, retrasos e incertidumbres en el mercado.

El informe dice que un marco de estandarización claro y específico, que considera factores como la calidad, la confiabilidad, el rendimiento y la seguridad, es crucial para el futuro de BIPV, ya que ayudará a desbloquear un mayor potencial de mercado y garantizar estándares de seguridad y calidad.

Agrega que la armonización global en todo el mercado, al lograr un equilibrio entre los protocolos estandarizados y las regulaciones de construcción locales, será clave para garantizar una calidad y adaptabilidad constantes en todas las regiones.

Fabio Parolini, uno de los autores del informe, calificó a BIPV como un paso crítico para liberar todo su potencial en la transición global hacia la energía sostenible. «El informe destaca la necesidad urgente de cerrar las brechas regulatorias y armonizar los estándares para la energía fotovoltaica integrada en edificios (BIPV)», añadió.

El informe también detalla metodologías basadas en el rendimiento para evaluar el comportamiento mecánico y eléctrico de módulos y sistemas BIPV, allanando el camino para productos más eficientes y confiables.

En otra parte del informe, la IEA-PVPS dice que se ha logrado un avance significativo a través del proyecto BIPVBOOST, una iniciativa europea que documenta criterios y requisitos de última generación para la clasificación de productos BIPV y propone protocolos de prueba iniciales, incluidas las temperaturas de funcionamiento y el impacto. pruebas de resistencia.

“Este enfoque proactivo, que actualmente se está implementando en proyectos en curso, tiene como objetivo impulsar avances en la tecnología BIPV al fomentar el consenso internacional y facilitar integración en los marcos regulatorios existentes, allanando el camino para un futuro prometedor para BIPV”, concluye el documento.

El último informe de la IEA-PVPS sigue a publicaciones recientes sobre generadores fotovoltaicos parcialmente sombreados, fabricación solar global y Centros energéticos para el hidrógeno verde..

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Imagen representacional. Crédito: Canva

VictoriaMetrics, un proveedor de soluciones de monitoreo y bases de datos de series temporales abiertas de código, se ha asociado con IHI Terrasun Solutions, líder en integración de sistemas de almacenamiento de energía, para trabajar en uno de los proyectos de energía limpia más grandes de América del Norte. La colaboración se centra en un gran proyecto solar y de almacenamiento en Nevada, que abarca casi 5.000 acres.

Este proyecto está diseñado para suministrar energía limpia para satisfacer hasta el 10% de la demanda eléctrica de Nevada durante las horas pico. También reducirá las emisiones de carbono del estado en 1,5 millones de toneladas al año. La base de datos avanzada y las herramientas de monitoreo de VictoriaMetrics ayudarán a optimizar el rendimiento de más de 1,8 millones de paneles solares y garantizarán la salud de un enorme sistema de almacenamiento de energía de 1.416 MWh, uno de los más grandes del mundo. .

Para gestionar las grandes cantidades de datos generados por los paneles solares y los sistemas de almacenamiento de baterías, la solución de IHI Terrasun procesa de manera eficiente millones de métricas por segundo con alta precisión. Los sistemas tradicionales no podían manejar las crecientes demandas de datos, lo que llevó a los equipos de gestión y ciencia de datos de IHI Terrasun a buscar una mejor solución. Después de una evaluación exhaustiva, eligieron la solución Enterprise de VictoriaMetrics como la mejor opción.

Larry Kane, vicepresidente senior de ingeniería de proyectos y productos de IHI Terrasun, afirmó: “VictoriaMetrics es una parte esencial de la gestión de datos para nuestro trabajo en Nevada. La capacidad de la plataforma para manejar conjuntos de datos masivos con facilidad ha sido invaluable. Utilizamos los datos para generar información operativa para el mantenimiento y la optimización, lo cual es esencial para la salud del proyecto. El ingenio y la rápida respuesta del equipo de VictoriaMetrics los convierten en un gran socio en este esfuerzo técnicamente desafiante”.

VictoriaMetrics Enterprise demostró ser la solución ideal para el proyecto energético a gran escala de IHI Terrasun debido a sus cuatro puntos fuertes clave. En primer lugar, su escalabilidad le permite manejar millones de puntos de datos sin sacrificar el rendimiento, lo que garantiza que las operaciones de IHI Terrasun sigan siendo eficientes y confiables. Además, la plataforma proporciona información en tiempo real, impulsando los paneles Assured Insights™ de IHI Terrasun y permitiendo el monitoreo en tiempo real del estado de la batería y la estabilidad de la red, lo que ayuda al equipo a tomar decisiones informadas y optimizar las operaciones de campo. La confiabilidad de VictoriaMetrics garantiza que la integridad de los datos se mantiene incluso en condiciones exigentes, lo que la convierte en una solución confiable para sistemas críticos. Finalmente, su rentabilidad ofrece una forma escalable y asequible de gestionar grandes flujos de datos, añadiendo un valor significativo a la plataforma Assured Insights™ de IHI Terrasun.

Artem Navoiev, cofundador de VictoriaMetrics, mencionó: “Estamos encantados de ver que VictoriaMetrics ha ayudado a hacer crecer las operaciones de almacenamiento de energía de IHI Terrasun durante los últimos seis años. Nuestro compromiso de desarrollar una solución eficiente y escalable ha sido fundamental para la misión de VictoriaMetrics, y no pudimos haber logrado este éxito sin los invaluables comentarios de IHI Terrasun sobre nuestro producto Enterprise. En estos tiempos en los que batir récords de calor se ha convertido en una nueva normalidad, me alegra que existan proyectos solares de esta escalada y que VictoriaMetrics pueda apoyarlos. Si podemos ayudar a reducir las emisiones de CO2, estamos marcando la diferencia. Esto es beneficio para IHI Terrasun, VictoriaMetrics y, en última instancia, para el planeta”.

Mientras el megaproyecto de Nevada continúa almacenando energía limpia con la gestión de IHI Terrasun, VictoriaMetrics desempeñará un papel clave en su éxito. Con su enfoque en la innovación y la satisfacción del cliente, VictoriaMetrics está bien equipada para respaldar los proyectos de almacenamiento de energía de IHI Terrasun y ayudar a crear un futuro más sostenible.

Las instalaciones solares crecieron un 4% interanual en la Unión Europea en 2024, muy por debajo del crecimiento del 53% en 2023. La desaceleración coincide con una disminución de la inversión en energía solar, lo que marca la primera caída de este tipo en este década. SolarPower Europe prevé ahora un crecimiento anual del 3% al 7% en instalaciones solares de 2025 a 2028.

Los desarrolladores desplegarán 65,5 GW de energía solar en toda la Unión Europea en 2024, según Energía Solar Europa‘s «Perspectivas del mercado de la UE para la energía solar 2024-2028.”

La cifra refleja un crecimiento anual del 4% en comparación con los 62,8 GW de instalaciones de 2023, una fuerte caída con respecto al crecimiento del 53% registrado entre 2022 y 2023. El parque solar de la UE suma ahora 338 GW, cuatro veces más que los 82 GW de hace una década.

SolarPower Europe atribuyó la desaceleración a factores más allá de la caída de los precios de los componentes solares y los menores costos iniciales de las instalaciones. Los proyectos solares a escala comercial montados en suelo experimentaron una reducción de costos promedio del 28% en 2024.

A pesar de la reducción de los costes de capital, la inversión solar de la UE cayó por primera vez en esta década, pasando de 63.000 millones de euros (66.200 millones de dólares) en 2023 a 55.000 millones de euros en 2024.

Walburga Hemetsberger, directora ejecutiva de SolarPower Europe, calificó el informe como una advertencia para los responsables políticos y operadores de sistemas europeos.

«Ralentizar el despliegue solar significa frenar los objetivos del continente en materia de seguridad energética, competitividad y clima», afirmó Hemetsberger. “Europa necesita instalar alrededor de 70 GW al año para cumplir sus objetivos para 2030. Se necesitan medidas correctivas ahora, antes de que sea demasiado tarde”.

Los pronósticos de SolarPower Europe para 2025 a 2028 sugieren que el crecimiento se estabilizará entre el 3% y el 7% en los próximos años.

Se espera que el mercado agregue 70 GW en 2025, lo que refleja una tasa de crecimiento del 7% impulsada por proyectos a escala de servicios públicos iniciados durante los últimos dos años, que se beneficiaron de precios de módulos récord. Se prevé que las tasas de crecimiento caigan al 3% en 2026, con 72,3 GW de nueva capacidad solar, a medida que los desarrolladores responden a las limitaciones de la red y las incertidumbres del mercado.

El escenario medio de SolarPower Europe prevé una mejora del 6% hasta 76,5 GW en 2027 y un aumento del 7% hasta 81,5 GW en 2028.

“Este crecimiento más lento refleja graves desafíos estructurales, en particular en aquellos Estados miembros donde las adaptaciones de los marcos políticos y la infraestructura se han quedado rezagadas con respecto a la energía solar. «La rápida evolución del sector hasta convertirse en un pilar notable del suministro de energía», señala el informe. «También queda por ver qué significa para la energía solar en la UE el cambiante panorama político hacia la derecha».

Las lentas tasas de electrificación continúan suprimiendo la demanda en el mercado solar, con la tasa de electrificación del continente estancada en el 23% en los últimos cinco años, lo que hace que gran parte del sistema energético dependa de combustibles fósiles. SolarPower Europe señaló que la Electrification Alliance está presionando para lograr una tasa de electrificación del 35% para 2030.

El informe también destaca la falta de flexibilidad del sistema energético, lo que ha llevado a restricciones solares y precios negativos, socavando la seguridad energética y la competitividad europeas como factores adicionales que contribuyen a la desaceleración.

Las instalaciones solares residenciales disminuyeron drásticamente en 2024, con 5 GW de energía solar residencial agregada en comparación con los 12,8 GW del año pasado. SolarPower Europe atribuyó esta disminución al impacto cada vez menor de la crisis energética y pronostica que esta tendencia persistirá en los próximos años.

Según el informe, es probable que las instalaciones solares más grandes crezcan más rápidamente que los proyectos sobre tejados en la UE durante la segunda mitad de la década. Sin embargo, se espera que las instalaciones en tejados, partiendo de una base más grande, retengan una mayor proporción de la capacidad solar total de la UE durante la década en comparación con los proyectos a escala de servicios públicos.

A nivel nacional, SolarPower Europe descubrió que cinco de los diez principales mercados solares de la UE (España, Polonia, Países Bajos, Austria y Hungría) instalaron menos energía solar en 2024 que en 2023. Mientras tanto, Alemania, Italia, Francia, Grecia y Polonia experimentaron ganancias modestas, y la mayoría agregada alrededor de 1 GW más que el año pasado.

Entre 2025 y 2028, se prevé que Alemania, España e Italia lideren el crecimiento del mercado solar de la UE.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La Autoridad de Contratación Pública de Bangladesh está buscando consultores para completar un estudio de viabilidad para la construcción de un parque solar. La fecha límite para las solicitudes es el 9 de enero de 2025.

Imagen: Michael Wilson, Unsplash

La Autoridad de Contratación Pública de Bangladesh busca una empresa consultora para completar un estudio de viabilidad técnica y económica para la construcción de un parque solar.

Según el aviso de licitaciónel trabajo se relaciona con la construcción de un proyecto solar en el área de Jamalpur Char en el norte Bangladesh.

el términos de referencia afirman que el estudio de viabilidad debe incluir tierras, recursos solares, integración de la red de energía renovable variable (ERV) y evaluaciones tecnoeconómicas, junto con una hoja de ruta de desarrollo.

Las autoridades aceptarán ofertas de empresas consultoras internacionales. La fecha límite para las manifestaciones de interés es el 9 de enero de 2025.

A principios de este mes, la Junta de Desarrollo Energético de Bangladesh lanzó una licitación para la instalación de 12 proyectos solares conectados a la red con una capacidad combinada de 353 MW. La licitación está abierta hasta el 3 de febrero de 2025.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El desarrollador solar alemán ib vogt GmbH ha firmado un acuerdo de compra de energía virtual (vPPA) con la empresa estadounidense de ciencia de materiales Corning Inc (NYSE:GLW) por 88,78 MWp de nueva capacidad solar en España.

El vPPA respaldará el proyecto del parque solar Pato de ib vogt en Segovia, que comenzará a operar comercialmente en el segundo trimestre de 2025, según informó este martes la compañía alemana en un comunicado.

La planta de Pato contará con paneles solares bifaciales de un solo retrato montados sobre seguidores, capaces de producir aproximadamente 215,6 GWh de electricidad al año. Como se describe en el vPPA, este resultado permitirá a las instalaciones de Corning compensar su consumo de energía con energía renovable, señaló ib vogt.

El proyecto Pato forma parte del mayor clúster de energía solar de Segovia de ib vogt, que suma un total de 513 MWp en varios proyectos a punto de finalizar. La compañía logró el cierre financiero de tres proyectos de Segovia en febrero de este año y obtuvo financiación para un cuarto desarrollo en abril.

El Instituto Fraunhofer de Sistemas de Energía Solar (Fraunhofer ISE) y el Instituto Fraunhofer de Tecnología Ambiental, Seguridad y Energía (Fraunhofer UMSICHT) afirman que su nueva fachada combina módulos fotovoltaicos, protección contra la intemperie y aislamiento térmico. Eliminar la necesidad de una subestructura y utilizar aislamiento elaborado con materias primas sostenibles.

Imagen: Fraunhofer ISE, Mona Mühlich

Delaware revista pv Alemania

El enfoque estándar para la construcción de sistemas fotovoltaicos integrados en fachadas utiliza sistemas de montaje especializados para combinar módulos solares con fachadas estilo cortina con ventilación trasera.

Para abordar esto, Instituto Fraunhofer ISE y Fraunhofer UMSICHT han desarrollado un elemento de fachada que integra fotovoltaica, protección contra la intemperie y aislamiento térmico en una sola unidad.

Los institutos dijeron que su nuevo sistema elimina la necesidad de una subestructura adicional. Los elementos prefabricados, de 1 metro x 1,2 metros, se presentan en dos versiones con aislamiento elaborado con materias primas renovables, como fibras de cáñamo y setas.

«Ambos materiales son adecuados para su uso en fachadas en términos de comportamiento al fuego», afirma Holger Wack, jefe del grupo de desarrollo de materiales de construcción en Fraunhofer UMSICHT.

El material del hongo se puede producir a partir de residuos agrícolas, lo que lo hace muy eficiente en el uso de recursos. Ambos tipos de aislamiento están diseñados para una fácil separación de los elementos de la fachada para permitir el reciclaje.

Según se informa, esta construcción integrada reduce significativamente el uso de materiales en comparación con la energía fotovoltaica integrada en edificios (BIPV) convencional. Los elementos también se montan rápidamente y, en caso necesario, se pueden desmontar individualmente sin afectar a los componentes vecinos. Una instalación de prueba en el Instituto Fraunhofer de Física de la Construcción IBP en Holzkirchen (Alemania) demostró velocidades de montaje de menos de 1,5 horas por elemento.

Actualmente, la fachada fotovoltaica está siendo sometida a un intenso control de la potencia, la durabilidad, el comportamiento de temperatura y humedad y el rendimiento del aislamiento térmico. Los investigadores también están desarrollando una descripción del proceso digital para garantizar un diseño y montaje adecuados en futuros proyectos de construcción.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!