Toyota Manufacturing UK afirma que lidera un consorcio para investigar la viabilidad de un vehículo eléctrico ligero de micromovilidad con techo fotovoltaico, conectividad digital y componentes sostenibles.

Un consorcio liderado por Toyota Manufacturing UK, filial de ToyotaMotorestá investigando la viabilidad de un vehículo eléctrico biplaza ligero con energía solar fotovoltaica integrada, conectividad digital y componentes sostenibles.

El estudio de viabilidad se centrará en un vehículo tipo L6e de última milla inspirado en el concepto de micromovilidad FT-Me de Toyota anunciado a principios de este año. Un tipo L6 es un vehículo de cuatro ruedas o cuatriciclo con una velocidad máxima de 45 km.

El proyecto incluye un energía solar integrada en el vehículo (VIPV) será diseñado, desarrollado y validado por el socio del consorcio Savcor, una empresa de tecnología finlandesa. El VIPV está destinado a ampliar la autonomía de conducción en un 20%, “creando una solución que admite el uso diario promedio sin carga”, dijo Toyota Manufacturing UK en un comunicado de prensa.

Otro socio, ELM Mobility, con sede en el Reino Unido, que tiene su propio vehículo de micromovilidad, un tipo L7eCU más grande con un volumen de carga de 4 m2, según su sitio web, investigará el potencial para maximizar los componentes compartidos. Según la empresa, este trabajo tiene el potencial de reducir los costos de desarrollo duales y al mismo tiempo crear economías de escala.

También se prevén componentes de conectividad digital y el uso de materiales reciclados, ligeros y sostenibles.

Dirigido por un equipo de Toyota en Derby, Inglaterra, el proyecto contará con el apoyo de investigadores de la Universidad de Derby, quienes brindarán experiencia sobre el comportamiento de los usuarios de micromovilidad y la viabilidad de la energía solar.

Los socios del consorcio han obtenido £15 millones ($20 millones) en fondos de contrapartida, según un anuncio separado del Departamento de Negocios y Comercio del Reino Unido, señalando que la financiación proviene del programa de Investigación y Desarrollo Colaborativo del Centro de Propulsión Avanzada del Reino Unido (APC), dirigido a tecnologías de cero emisiones y nuevos conceptos de movilidad.

Otro ejemplo reciente de uso de energía solar fotovoltaica con materiales ligeros. micromovilidad vehículos es el El consorcio European Giants, que está desarrollando VIPV integrado Prototipos de vehículos de las clases L5, L6 y L7 proporcionados por varios fabricantes internacionales. Y el año pasado, el El equipo francés Croisière Verte utilizó un Citroen Ami modificado demostrar el potencial de los vehículos solares portátiles y los vehículos eléctricos compactos y livianos en un viaje por el continente africano.

Científicos en China han desarrollado un novedoso método de pronósticos de energía consciente de las pérdidas que aprovecha el procesamiento de señales, la interacción de covariables de Múltiples escalas y el aprendizaje de transferencia colaborativa de Múltiples. dominios. Según se informa, este enfoque mejora la precisión promedio de los pronósticos en un 15,3%.

Un equipo de investigación liderado por China Universidad de Hunan ha desarrollado un novedoso método de previsión de energía fotovoltaica consciente de las pérdidas, diseñado para manejar datos faltantes o incompletos.

La metodología de aprendizaje de transferencia colaborativa multidominio e interacción de covariables multiescala (MDCTL-MCI) combina división de señales, interacción de covariables multiescala y aprendizaje de transferencia colaborativa multidominio.

«Este estudio considera cómo se puede utilizar eficazmente la información covariable para mejorar el rendimiento predictivo, y si la capacidad de generalización inherente y la solidez de los algoritmos de aprendizaje profundo se pueden aprovechar para pronosticar directamente la irradiación solar. en presencia de características de entrada faltantes sustanciales, sin realizar imputaciones adicionales, y para realizar un análisis exhaustivo de los diversos factores que influyen y los mecanismos predictivos subyacentes”, dijo el grupo.

Para lograr esto, el método aplica primero un análisis de espectro singular multivariado (MSSA) para reducir el ruido y mejorar la representación de los datos. A continuación, un enfoque ligero de MCI modela las relaciones entre variables y extrae patrones temporales profundos. En el tercer paso, la estrategia MDCTL mejora la solidez del modelo en condiciones de datos de baja calidad mediante la integración de datos de múltiples sitios fotovoltaicos. Finalmente, una técnica de explicación aditiva de Shapley (SHAP) identifica los factores clave que influyen en el desempeño de los pronósticos.

El conjunto de datos utilizado en el estudio consta de un año de datos operativos continuos de cuatro estaciones solares fotovoltaicas en el norte, centro y noroeste de China, registrados en intervalos de 30 minutos. Estas estaciones tienen capacidades de producción nominal que van desde 30 MW hasta 130 MW. Según los investigadores, el conjunto de datos «muestra importantes problemas de calidad de los datos». Si bien los datos de producción de energía fotovoltaica son relativamente completos, las covariables como la irradiancia solar y las condiciones climáticas muestran tasas faltantes que oscilan entre el 0% y el 80% en las diferentes estaciones. Los datos se dividieron en conjuntos de entrenamiento, validación y prueba utilizando una proporción de 6:1:1.

Observed and predicted value curves

» data-medium-file=»https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-600×419.jpg» data-large-file=»https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-1200×838.jpg» tabindex=»0″ role=»button» class=»size-medium wp-image-320491″ src=»https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-600×419.jpg» alt=»» width=»600″ height=»419″ srcset=»https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-600×419.jpg 600w, https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-1200×838.jpg 1200w, https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-768×536.jpg 768w, https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-1536×1073.jpg 1536w, https://www.pv-magazine.com/wp-content/uploads/2025/10/1-s2.0-S0306261925015016-gr9_lrg-2048×1430.jpg 2048w» sizes=»(max-width: 600px) 100vw, 600px»>

Curvas de valores observados y previstos.

Imagen: Universidad de Hunan, Energía Aplicada, CC BY 4.0

«Dado el papel fundamental de los tipos de covariables en la determinación de la precisión del modelo, tanto el análisis de evaluación de Pearson (para relaciones lineales) como el análisis de evaluación de Spearman (para relaciones no lineales) se realizan en seis variables», explicó el equipo. «La irradiancia horizontal global (GHI), la irradiancia normal directa (DNI) y la irradiancia solar total (TSI), que muestran la clasificación más fuerte con la producción de energía fotovoltaica, se seleccionan como variables de entrada para experimentos posteriores. Para comprender mejor la distribución de los datos, se trazan histogramas marginales para representar la relación entre cada variable seleccionada y la producción de energía fotovoltaica».

El modelo MDCTL-MCI utiliza 48 pasos de tiempo históricos como entrada y realiza pronósticos de varios pasos para los siguientes 48 pasos de tiempo en un solo paso hacia adelante. Su rendimiento se comparó con varios métodos de pronóstico de series temporales de última generación, incluidos Pyraformer, Transformer, Informer, TimeXer, iTransformer y PatchTST, así como con modelos basados ​​en MLP como LightTS, TSMixer y MCI.

«Extensos experimentos en cuatro instalaciones fotovoltaicas chinas revelan que, en comparación con los métodos de referencia, el método propuesto mejora la precisión promedio en un 10,5% en condiciones de datos completos y en un 15,3% en varios escenarios de datos faltantes», mostraron los resultados. «En resumen, el método MDCTL-MCI propuesto en este estudio aborda de manera efectiva las limitaciones de la subutilización de covariables y la inestabilidad e inexactitud de los pronósticos en condiciones de mala calidad de los datos, que siguen siendo comunes en la investigación. existentes. El modelo propuesto establece una base sólida para el despliegue de sistemas fotovoltaicos en entornos complejos y ofrece contribuciones significativas al desarrollo de la tecnología fotovoltaica».

El nuevo enfoque se describe en “Previsión fotovoltaica sólida en condiciones de gran falta de datos mediante colaboración multidominio e interacción de covariables”, publicado en Energía Aplicada. Científicos de China Universidad de Hunan, Universidad de ZhejiangJapon Universidad de Kyushuy Australia UniversidadJames Cook han contribuido al estudio.

Los investigadores de Wood Mackenzie dicen que la energía fotovoltaica de un solo eje ofrece los costos de generación a escala de servicios públicos más bajos a nivel mundial, y se espera que las ganancias de eficiencia y las cadenas de suministro estables reduzcan el costo nivelado. de la electricidad (LCOE) de la energía solar.

La energía solar mantendrá su posición como la fuente de generación de energía más competitiva del mundo hasta 2025, según un análisis de madera mackenzie.

El último trabajo de la consultora repasa la LCOE para energías renovables en Europa, América del Norte, América Latina, Asia Pacífico y Medio Oriente y África (MENA).

Descubrió que los sistemas de seguimiento de un solo eje en la región MENA son la fuente de generación de energía más competitiva en costos a 37 dólares/MWh. Wood Mackenzie dijo que la energía solar a escala de servicios públicos mantiene su posición como fijadora de precios en la región MENA, y que la tecnología de seguimiento de un solo eje supera constantemente a la energía eólica terrestre. Para 2060, se prevé que los costos fotovoltaicos con seguidor de un solo eje converjan en aproximadamente $17/MWh.

Los analistas agregaron que las tecnologías fotovoltaicas de seguimiento y de inclinación fija seguirán siendo más rentables que la energía eólica terrestre durante todo el período de las perspectivas en la región MENA. Mientras tanto, se espera que los costos del almacenamiento de baterías a escala de servicios públicos experimenten una caída notable, y se espera que los precios promedio llave en mano en Arabia Saudita y los Emiratos Árabes Unidos disminuyan entre un 7% y un 9% para 2034.

En Europa, el LCOE de las energías renovables cayó un 7% en 2025, ya que los costos de capital cayeron un 8% en comparación con el promedio de 2020 a 2024. La energía solar fotovoltaica a gran escala con seguimiento de un solo eje ofrece actualmente el LCOE promedio más bajo de Europa, dijo Wood Mackenzie, y la disminución de los precios de los módulos contribuye al 10% de las reducciones de costos con respecto a 2024.

Wood Mackenzie dijo que el LCOE de la energía fotovoltaica distribuida comercialmente en Europa podría disminuir un 49% para 2060 en comparación con los niveles actuales. Mientras tanto, se espera que los costos de almacenamiento de baterías de cuatro horas a escala de servicios públicos caigan por debajo de $100/MWh para 2026, antes de disminuir otro 35% para 2060.

La energía solar comercial actualmente disfruta del LCOE promedio más bajo en toda América Latina, y la energía fotovoltaica de un solo eje generará los costos de generación a escala de servicios públicos más competitivos en 2025. Los precios más bajos se encuentran en los mercados más maduros de la región, incluidos Brasil, Chile y México. Actualmente se pronostica que en toda América Latina el LCOE del almacenamiento disminuirá un 24% para 2060, según las predicciones de Wood Mackenzie.

En Asia Pacífico, la energía solar a escala de servicios públicos ofrece los costos de generación más bajos de toda la región, con su LCOE que abarca desde $27/MWh en China hasta $118/MWh en Japón. China también alcanza actualmente el LCOE de almacenamiento más bajo del mundo, lo que Wood Mackenzie atribuyó a la intensa competencia de los proveedores.

Los analistas también dijeron que si bien los nuevos aranceles estadounidenses han aumentado los costos de capital solar a corto plazo en los Estados Unidos, el avance de las tecnologías de módulos solares, inversores y seguidores impulsará reducciones de precios a largo plazo.

Amhed Jameel Abdullah, analista de investigación senior de Wood Mackenzie, agregó que las mejoras tecnológicas, la optimización de la cadena de suministro y las economías de escala ayudarán a lograr reducciones continuas de costos para las energías renovables, contribuyendo a reforzar su posición como la tecnología de generación de energía dominante a nivel mundial.

«Nuestro análisis LCOE 2025 revela que la energía solar fotovoltaica y la eólica terrestre se han convertido en las opciones dominantes de bajo coste en todo el mundo, mientras que los sistemas híbridos y el almacenamiento en baterías están cerrando rápidamente la brecha de competitividad», concluyó Abdullah.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El capital de riesgo, el mercado público y la financiación de deuda en la industria solar alcanzaron los 17.300 millones de dólares durante los primeros nueve meses de 2025, dijo Mercom Capital Group.

Delaware revista pvEE. UU.

La financiación corporativa total, incluida la financiación de capital de riesgo (VC), el mercado público y la financiación de deuda, disminuyó un 22% año tras año durante los primeros tres trimestres de 2025, según un informe de Mercom Capital Group.

Durante los primeros nueve meses de 2025, la financiación corporativa total alcanzó los 17.300 millones de dólares, frente a los 22.300 millones de dólares recaudados durante los primeros nueve meses de 2024.

La financiación de capital de riesgo alcanzó los 2.900 millones de dólares en 55 acuerdos durante el período, frente a los 3.900 millones de dólares recaudados en 39 acuerdos en el mismo período del año anterior. Los mayores acuerdos de capital de riesgo fueron 1.000 millones de dólares recaudados por Origis Energy, 500 millones de dólares recaudados por Silicon Ranch y 130 millones de dólares recaudados por Terabase Energy.

La financiación de la deuda solar ascendió a 12.700 millones de dólares en 60 acuerdos, un 24% menos que los 16.700 millones de dólares recaudados durante los primeros nueve meses de 2024.

En los primeros tres trimestres de 2025, las empresas adquirieron 165 proyectos solares por un total de 29 GW. Se trata de un ligero aumento con respecto a los 28,3 GW en transacciones de hace un año.

La actividad de fusiones y adquisiciones aumentó año tras año, con 76 acuerdos en los primeros nueve meses de 2025 en comparación con 62 el año pasado.

Las estadísticas de Enedis muestran que 4,2 GW de energía solar se conectaron a la red francesa en el período enero-septiembre, incluidos 82 MW combinados con almacenamiento, lo que marca una ligera disminución con respecto a 2024.

Delaware revista pv francia

El operador francés de redes de distribución Enedis informó de 1.507 MW de nueva capacidad fotovoltaica conectada a la red en el tercer trimestre de 2025, incluidos 82 MW equipados con almacenamiento.

Combinado con 1.407 MW conectados en el primer trimestre y 1.358 MW en el segundo, la nueva capacidad total alcanzó 4.272 MW en los primeros nueve meses de 2025.

Las cifras reflejan un ligero descenso interanual respecto a 2024, cuando en el mismo periodo ya se habían conectado 3.374 MW. Enedis señaló que 2024 terminó con un récord de 4,6 GW de nueva capacidad fotovoltaica agregada a su red.

Al 30 de septiembre, 212 MW estaban conectados a la red de baja tensión por debajo de 36 kW, incluidos 13 MW con almacenamiento. Otros 85 MW estaban conectados en el rango de 36 kW a 100 kW, 611 MW entre 100 kW y 250 kW y 599 MW a la red de alta tensión, de los cuales 69 MW estaban acoplados con almacenamiento.

Por tipo de uso, 1.163 MW fueron de inyección total a rojo, 315 MW de autoconsumo con inyección excedente y 29 MW de autoconsumo únicamente. La capacidad fotovoltaica instalada acumulada en Francia se situaba en 24,85 GW a finales de junio de 2025.

Powerchina ha terminado el parque solar Guayepo III de 200 MW en el norte de Colombia, conectándolo a la red seis días antes de lo previsto para la eléctrica italiana Enel.

Delaware pv magazine Latinoamérica

Enel Colombia, filial de Enel, dijo que el proyecto Guayepo III en la provincia del Atlántico alcanzó la conexión total a la red el 7 de octubre a pesar de dos temporadas de fuertes lluvias. Powerchina actuó como contratista de ingeniería, adquisiciones y construcción.

La instalación incluye más de 457.700 paneles solares repartidos en aproximadamente 688 hectáreas entre Ponedera y Sabanalarga. Forma parte de un complejo mayor que incluye Guayepo I y II, que en conjunto suman 486,7 MW.

La construcción de Guayepo III comenzó en agosto de 2024, seguida por el parque solar Atlántico de 199,5 MW en noviembre. Juntos, los proyectos crean uno de los grupos solares más grandes de Colombia.

En julio, Enel Colombia recibió el primer tramo de 100 millones de dólares de un paquete de financiación de 200 millones de dólares del Banco Europeo de Inversiones para Guayepo III y el proyecto Atlántico.

Colombia añadió 1,6 GW de energía solar En 2024, lo que elevará el total del país a 1,87 GW.

Mercedes-Benz presentó su primer prototipo de automóvil con un recubrimiento solar de nanopartículas libres de silicio y con una eficiencia del 20% que impulsa el vehículo incluso cuando está apagado y utiliza módulos más delgados que un cabello humano.

El fabricante de automóviles alemanes Mercedes-Benz ha presentado el prototipo Vision Iconic, el primer automóvil con su “pintura solar«, en la Semana de la Moda de Shanghai en China. La compañía dijo que el recubrimiento comprende módulos innovadores de sólo 5 micrómetros de espesor que se pueden aplicar a la carrocería del automóvil «como una pasta fina como una oblea» u otros sustratos.

La capa protectora se describe como una nueva pintura a base de nanopartículas que deja pasar el 94% de la energía solar. Cada módulo pesa 50 gramos por metro cuadrado, es más delgado que un cabello humano y alcanza alrededor del 20% de eficiencia en una superficie de 11 metros cuadrados, el equivalente a un SUV de tamaño mediano.

Mercedes afirma que el revestimiento puede generar electricidad para viajes de hasta 12.000 kilómetros al año bajo irradiación estandarizada en sus instalaciones de Stuttgart, Alemania, o hasta 20.000 kilómetros en Beijing. El recubrimiento solar se puede aplicar con cualquier color de pintura y no utiliza silicona ni materiales de tierras raras. Puede generar energía cuando el vehículo está apagado y almacenarla directamente en la batería.

«Vision Iconic encarna nuestra visión para el futuro de la movilidad», afirmó Markus Schäfer, miembro del consejo de administración de Mercedes-Benz Group AG. «Con revolucionarias innovaciones como la computación neuromórfica, la dirección electrónica, la pintura solar y la conducción altamente automatizada de nivel 4, junto con tecnología de vanguardia, estamos estableciendo nuevos estándares para la era eléctrica y digital».

El prototipo también cuenta con computación neuromórfica para reducir la energía necesaria para el procesamiento de datos en un 90 %, lo que respalda los sistemas de conducción autónoma. El Vision Iconic incluye dirección electrónica, eliminando el vínculo mecánico entre el volante y las ruedas delanteras para ahorrar espacio y simplificar el diseño interior.

Esta semana Women in Solar+ Europe da voz a Maribel González, directora comercial de Brighter Green Engineering, con sede en el Reino Unido. Ella dice que romper las barreras tradicionales requirió paciencia, confianza y un enfoque en la excelencia. «El aprendizaje continuo se convirtió en una brújula personal, cada desafío fue una oportunidad para adaptarnos y crecer», afirma.

Las industrias solares plus dependen de la innovación y la resolución de problemas, y ambas prosperan cuando los equipos son diversos e inclusivos. La diversidad de género reúne perspectivas variadas que mejoran la creatividad, la toma de decisiones y el desempeño general. Habiendo trabajado como español en el sector solar dominado por hombres en el Reino Unido, ha sido testigo de primera mano de cómo los equipos inclusivos fomentan el respeto, la comunicación abierta y mejores soluciones. Cuando animamos a las mujeres ya los grupos subrepresentados a asumir funciones solares, no sólo construimos equipos más fuertes; Hacemos que la industria refleje mejor las comunidades a las que sirve. Así es como logramos un crecimiento sostenible y un impacto social positivo.

Mirando hacia atrás en mi carrera, me enfrenté a claras barreras sistémicas, desde prejuicios de género hasta la falta de modelos femeninos en puestos de alto nivel. Desde el principio, aprenderé a afrontar estos desafíos construyendo una red de apoyo y demostrando constantemente mi competencia. Cada proyecto exitoso se convirtió en una oportunidad para demostrar democracia y ganar confianza. Con el tiempo, la autodefensa, el aprendizaje continuo y la resiliencia ayudaron a abrir puertas de liderazgo no solo para mí sino también para otras mujeres que vieron lo que era posible.

Romper las barreras tradicionales requiere paciencia, confianza y centrado en la excelencia. Descubrí la importancia de dejar que los resultados hablen más que las palabras, de demostrar valor a través de la experiencia y la perseverancia. El aprendizaje continuo se convirtió en una brújula personal; Cada desafío fue una oportunidad para adaptarnos y crecer. Estas lecciones me enseñaron que la resiliencia y el profesionalismo son poderosas herramientas de liderazgo, que pueden redefinir cómo es el éxito para las mujeres en las industrias técnicas.

Como líder actual, veo la inclusión como algo que se debe vivir todos los días, no solo promover en las políticas. Me esfuerzo por crear un ambiente donde todos se sientan escuchados, respetados y capacitados para contribuir. Esto significa fomentar la comunicación abierta, valorar las diversas perspectivas y desafiar los prejuicios cuando aparecen. La tutoría y la colaboración son el núcleo de este esfuerzo. Al liderar con el ejemplo y celebrar los logros en todos los niveles, trato de garantizar que cada miembro del equipo sepa que es valorado y que su crecimiento es importante.

Para las organizaciones que buscan retener y desarrollar talentos diversos, la tutoría y el patrocinio son esenciales. Estos crean puentes de oportunidades, ayudando a los profesionales emergentes a navegar sus carreras con orientación y confianza. También son clave los programas de desarrollo profesional equitativo, las políticas de trabajo flexible y la capacitación para concienciar sobre los prejuicios. Pero más allá de la estructura, la cultura importa más cuando las personas se sienten seguras para hablar, cuando sus ideas son respetadas y cuando el crecimiento parece accesible a todos; la retención se produce de forma natural.

También creo en el poder de los aliados. Todavía recuerdo a un colega que, sin saberlo, se convirtió en un mentor informal al principio de mi carrera. Se tomó el tiempo para explicarme los detalles técnicos, compartir sus conocimientos y guiarme a través de desafíos complejos. Su aliento no sólo amplió mi comprensión sino que también me dio la confianza para liderar proyectos de manera más efectiva. Su ejemplo me mostró cómo la alianza, cuando se basa en el respeto y el apoyo genuino, puede ayudar a eliminar las barreras que a menudo enfrentan las mujeres.

A las mujeres jóvenes que hoy ingresan a la industria de la energía solar y renovable, les diría: crean en sus habilidades y sigan sus sueños. Busque mentores, mantenga la curiosidad y nunca dude en asumir desafíos. Tu perspectiva importa; impulsa la innovación, fortalece los equipos y ayuda a dar forma a un futuro energético más inclusivo y sostenible. La industria solar necesita su voz, su visión y su coraje para seguir brillando más.

Maribel González es una profesional española que prospera en la industria solar del Reino Unido, donde ha construido una carrera definida por la resiliencia, la determinación y la pasión por la sostenibilidad. Como líder estratégico de operación y mantenimiento y desarrollo empresarial con más de ocho años de experiencia en proyectos solares y BESS a escala de servicios públicos, se especializa en negociación de contratos, gestión de relaciones con clientes y optimización del rendimiento de activos para garantizar la rentabilidad y la sostenibilidad a largo plazo. Apasionada por acelerar la transición energética, Maribel se centra en impulsar la innovación a través de soluciones avanzadas de operación y mantenimiento y el crecimiento empresarial estratégico. Su enfoque colaborativo y su profunda experiencia técnica la han posicionado como un líder confiable en la industria solar y de almacenamiento. Comprometida con fomentar la inclusión, defiende los lugares de trabajo que valoran la diversidad y las oportunidades equitativas. Maribel cree que las diversas perspectivas impulsan la innovación y fortalecen la transición renovable. Su mensaje a las mujeres jóvenes es simple pero poderoso: confíen en sus habilidades, acepten los desafíos y lideren con un propósito.

Interesado en unirse Maribel González y otras mujeres líderes y expertas de la industria en Women in Solar+ Europe? Descubra más: www.wiseu.network

La energía solar detrás del medidor para hogares, empresas y comunidades conlleva numerosos beneficios, según un artículo del profesor de ingeniería de Stanford, Mark Jacobson.

Delaware revista pvEE. UU.

Los proyectos solares generalmente se pueden clasificar en dos grupos: o son grandes proyectos montados en tierra a escala de servicios públicos conectados a la red, o son proyectos más pequeños y distribuidos, generalmente de 20 MW de capacidad o menos.

En California, y en muchos otros estados de EE.UU., los proyectos más pequeños y distribuidos, en particular los situados detrás del contador, están siendo atacados por las empresas de servicios públicos y las legislaturas estatales, a menudo siendo objeto de ataques. chivo expiatorio de las altas tarifas eléctricas. Un artículo de 2024 de Mark Jacobson, profesor de ingeniería civil y ambiental de la Universidad de Stanford, explica por qué deberíamos apoyar las instalaciones solares detrás del medidor en todo el país.

Los proyectos solares distribuidos a pequeña escala a menudo se clasifican como detrás del medidor (BTM) o frente al medidor (FOM), dependiendo de cómo están conectados a la red.

Los sistemas FOM están conectados a líneas de distribución de la red y dan servicio a los edificios directamente, minimizando la necesidad de construir líneas de transmisión adicionales. Las líneas de distribución están conectadas a líneas de transmisión, por lo que FOM solar también puede suministrar su electricidad al sistema de transmisión. Por lo tanto, están sujetos a las mismas normas de mercado y de conexión a la red que los sistemas fotovoltaicos de servicios públicos.

Los sistemas detrás del medidor suelen ser más pequeños que los sistemas FOM ya menudo se instalan en edificios, sobre estacionamientos, laderas, patios y lotes baldíos que dan servicio directamente a los edificios. Cualquier exceso de producción de electricidad de estos sistemas puede devolverse a la red y, si el sistema no satisface el 100% de la demanda, puede extraer energía de la red.

«Los operadores de red generalmente se oponen a la energía fotovoltaica distribuida BTM porque su primer impacto es reducir la demanda de electricidad de la red», dijo Jacobson. «Las empresas de servicios públicos afirman que los clientes restantes deben pagar un costo más alto por la demanda restante, principalmente porque el costo fijo del sistema de transmisión y distribución ahora se distribuye entre menos clientes».

Jacobson ofreció diez razones por las que BTM solar ayuda a todos:

1. La afirmación de que BTM solar reduce la demanda de electricidad y, por lo tanto, aumenta los costos al distribuir el costo fijo de transmisión y distribución entre un menor número de clientes, lo que se conoce como “desplazamiento de costos”, ignora la realidad de la transición energética. Se están electrificando los edificios, el transporte y la industria. Jacobson dijo que las necesidades de electricidad casi se duplicarán.

«Incluso si el 25 por ciento de la demanda total de electricidad se cubre con BTM PV, las necesidades generales de electricidad de la red seguirán aumentando en un 50 por ciento en comparación con la actualidad. Por lo tanto, la suposición de las empresas de servicios públicos de que un gran crecimiento en BTM PV reduce la demanda es válida sólo para niveles bajos de electrificación, no para la electrificación a gran escala, que es necesaria para abordar los problemas climáticos, de contaminación y de seguridad energética”, dijo Jacobson.

2. La energía solar para tejados BTM no requiere terreno nuevo, mientras que la energía solar a escala de servicios públicos sí. Por lo tanto, la energía solar BTM reduce las necesidades de terreno y los daños al hábitat.

3. BTM solar reduce la necesidad de líneas de transmisión y distribución. Los clientes de la red necesitan líneas de transmisión y distribución para el 100 por ciento de su consumo de electricidad, y las empresas de servicios públicos fotovoltaicos requieren líneas de transmisión y distribución para el 100 por ciento de su generación. Los clientes de energía solar de BTM solo necesitan líneas de transmisión que respalden la demanda adicional que no satisface su panel solar.

4. Cuando BTM solar se ubica junto con una batería, produce más de lo que consume el edificio y el exceso de electricidad se envía de regreso a la red. Esto resulta útil para evitar apagones, especialmente en los días calurosos de verano en las regiones donde se utiliza aire acondicionado.

5. Las chispas de las líneas de transmisión han provocado incendios forestales devastadores, como en California y Hawaii. El costo de tales incendios y el soterramiento de líneas de transmisión se ha transmitido a los clientes de California. La energía solar BTM reduce la incidencia de incendios, dijo Jacobson.

6. La incorporación de BTM PV reduce la extracción, el procesamiento y la quema de combustibles contaminantes (combustibles fósiles y bioenergía) para la generación de electricidad en la red, contribuyendo así a un medio ambiente más limpio.

7. Al reducir las emisiones de gases de efecto invernadero procedentes de combustibles contaminantes, BTM PV reduce el daño climático tanto a los clientes de la red fotovoltaica distribuida como a los de la red.

8. Al reducir el uso de combustibles fósiles, BTM PV reduce los problemas de inseguridad energética asociados con los combustibles fósiles.

9. La instalación de BTM PV crea más empleos que la instalación y operación de energía fotovoltaica y otra generación de electricidad a escala de red, y esto beneficia a un estado o país en su conjunto.

10. Debido a que la energía fotovoltaica en los tejados absorbe del 20 al 26 por ciento de la luz solar que le llega y luego la convierte en electricidad, el edificio absorbe menos luz, lo que enfría el edificio durante el día y reduce la demanda diurna de electricidad para el aire acondicionado. Este enfriamiento es mayor durante el verano y durante el día, cuando los precios de la electricidad son más altos.

Jacobson ofreció algunas razones más por las que la energía solar detrás del medidor es un beneficio para los contribuyentes en general, que pueden ser leer aquí.

Resilicon dice que la fase de ingeniería básica de su planta de polisilicio planificada en los Países Bajos está en marcha después de que el proyecto consiguiera un proveedor de tecnología y un contratista de ingeniería, adquisiciones y construcción. Una vez terminada, la planta producirá polisilicio de alta pureza para las cadenas de suministro solares.

La startup holandesa Resilicon ha dado un paso hacia el desarrollo de la primera planta de polisilicio de Europa alimentada por energía renovable.

Resilicon ha contratado a los especialistas estadounidenses en silicio Advanced Material Solutions (AMS) como su proveedor de tecnología ya la empresa estadounidense de ingeniería y construcción Fluor como su socio de ingeniería, lo que, según dice, allana el camino para que comience la fase de ingeniería. basico del proyecto.

Esta fase del proyecto está respaldada por más de 14 millones de euros (16,3 millones de dólares) en financiación con contribuciones del Ministerio de Asuntos Económicos de Holanda y los socios técnicos de Resilicon, entre otros.

Según detalles en el sitio web de Resilicon, la compañía obtuvo derechos exclusivos sobre la tecnología de AMS en Europa, Medio Oriente y África. La tecnología ya se está implementando con éxito en Corea del Sur y la India y se ha demostrado que reduce el consumo de energía en la producción de polisilicio hasta en un 30%.

Resilicon dice que ahora se está preparando para la siguiente fase de desarrollo y financiación, incluidos los permisos, el diseño detallado y la participación de las partes interesadas.

La planta de polisilicio se ubicará en la ciudad de Delfzijl, en la zona de los puertos marítimos de Groningen, en el noreste. Países Bajos. Una vez terminado, producirá polisilicio de alta pureza a escala para cadenas de suministro de energía solar, semiconductores y baterías, y al mismo tiempo funcionará completamente con energía renovable.

Resilicon estima que se requiere un total de 900 millones de euros (alrededor de 1.040 millones de dólares) en financiación para el proyecto y ha revelado que varias partes están explorando la oportunidad de inversión bajo la dirección de KPMG.

Se prevé que la demanda europea de polisilicio, el componente fundamental de las células solares, aumentará entre 80.000 y 120.000 toneladas para finales de la década, lo que equivale a al menos cuatro instalaciones de producción de polisilicio a escala mundial, afirma Resilicon. Más del 85% de la producción mundial de polisilicio se concentra actualmente en China.

Gosse Boxhoorn, fundador de Resilicon, comentó que el polisilicio es una materia prima clave para reducir la dependencia de Europa de China. «Asegurar su suministro es esencial para el futuro de las industrias clave de Europa, incluido el sector energético, la automoción, la electrónica y la defensa», añadió Boxhoorn.

En agosto fue reportado que los seis mayores fabricantes de polisilicio de China planean recaudar alrededor de 7 mil millones de dólares para comprar y dejar inactivo aproximadamente un tercio de la capacidad de producción de polisilicio del país. A principios de este año, investigadores. prevenido La industria china del polisilicio podría provocar una escasez mundial de polisilicio para 2028 si se recorta demasiada capacidad de producción.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares