Al igual que el año pasado, los sistemas de almacenamiento de energía en baterías (BESS) constituyeron casi toda la capacidad de nueva construcción seleccionada en las recientes subastas del Mecanismo de remuneración de capacidad (CRM) en Bélgica. Simon De Clercq, investigador asociado senior de Aurora Energy Research, dice a ESS News que hay aún más espacio para que los actores de BESS participen en los ejercicios de adquisición.

Imagen: Investigación de energía Aurora

Delaware Noticias ESS

La flota de almacenamiento de Bélgica está creciendo a un ritmo rápido, sobre todo debido a la oportunidad de asegurar los ingresos contratados a través de sus subastas CRM.

El último día de octubre, el operador del sistema Elia publicó los resultados de las subastas CRM celebradas este año, mostrando que un total de 450 MW de BESS habían obtenido contratos. Por primera vez, se llevaron a cabo dos subastas simultáneamente, a saber, la última subasta (Y-1) para el año de entrega 2025-2026 y la primera subasta (Y-4) para el año de entrega 2028-2029.

Elia anunció que se había cumplido el objetivo para el año de entrega 2025-2026: “la seguridad del suministro está garantizada y se ha contratado volumen suficiente”. En este ejercicio de contratación se contrataron un total de 100 MW de BESS. Para el año de entrega 2028-2029, se ha dado un primer paso importante con 350 MW de baterías seleccionadas en la subasta Y-4.

Para continuar leyendo, visita nuestro Noticias ESS sitio web.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Investigadores de la Universidad de Miyazaki en Japón han publicado un documento técnico de antecedentes sobre protocolos de prueba para abordar los desafíos únicos de los módulos fotovoltaicos integrados en vehículos (VIPV). Presenta los antecedentes de un nuevo modelo de probabilidad numérica que incorpora sombreado, sombreado parcial, sombreado dinámico, terreno irregular y curvaturas de módulos.

Investigadores de la Universidad de Miyazaki en Japón han publicado un informe sobre los avances en pruebas y protocolos reproducibles que abordan los desafíos de medir el rendimiento de módulos fotovoltaicos curvos integrados en vehículos (VIPV).

En el estudio”Ensayos y calificación de sistemas fotovoltaicos integrados en vehículos: antecedentes científicos”, publicado en Materiales de energía solar y células solares, El equipo de investigación dijo que su trabajo abordó los aspectos únicos de los módulos VIPV, como la curvatura y el impacto de la irradiación causados ​​por el sombreado, el sombreado parcial, el sombreado dinámico y las condiciones irregulares del terreno.

«El cálculo estándar para los sistemas fotovoltaicos a menudo se basa en suposiciones simplificadas, como la ausencia de sombras, terreno plano, instalaciones estáticas e irradiancia solar uniforme», dijo el coautor Kenji Araki. revistapv. “Sin embargo, estas suposiciones no reflejan con precisión las condiciones del mundo real. Es esencial considerar las imperfecciones reales, incluida la presencia de sombras, terreno irregular, sistemas fotovoltaicos móviles e irradiancia solar no uniforme. Aunque estos factores no se discuten en común, afectan significativamente el rendimiento de los sistemas fotovoltaicos en la práctica”.

El equipo llevó a cabo pruebas iniciales de nuevos protocolos y validación en laboratorios e institutos de investigación geográficamente diversos, así como pruebas en simuladores solares aplicando protocolos acordados utilizando los mismos datos de calibración, así como pruebas ciegas. Para las pruebas circulares, Nanjing AGG Energy, China, proporcionó módulos rígidos cubiertos de vidrio, incluidos cuatro niveles de radio de curvatura.

El grupo señaló al menos ocho diferencias claves que deben abordarse para lograr modelos y mediciones precisas para los productos VIPV. Por ejemplo, utilizando un sistema de coordenadas locales que incluye rotación 3D, captura las zonas de sombra de las puertas, el capó, el parachoques y el parabrisas trasero del vehículo.

Se requieren cálculos vectoriales basados ​​en una matriz de sombreado, en lugar de una relación o ángulo de sombreado. Las formas tensoriales, 4-Tensor, se utilizan para la respuesta angular a la luz incidente, en lugar de la curva lambartiana, y en lugar de la pérdida de coseno por los ángulos del panel fotovoltaico, se utiliza una descripción de la geometría diferencial utilizando la expresión vectorial de un elemento unitario, señalaron los investigadores.

Algunas de las diferencias fueron resumidas por Araki. “En el nuevo modelo, una matriz de sombreado tiene en cuenta el sombreado no uniforme en el cielo hemisférico. “Por el contrario, el análisis clásico se basa en una relación de sombreado escalar”, explicó, añadiendo que el nuevo método considera las células solares con superficies curvas y las analiza utilizando principios de geometría diferencial, “a diferencia del cálculo clásico, que supone que las células solares tienen una superficie plana.”

Además, el nuevo modelo utiliza el trazado de rayos “realizado en forma vectorial” en lugar de utilizar un enfoque de coseno, y en lugar de representar la respuesta angular y la modificación del ángulo de incidencia (IAM) como curvas basadas en el ángulo de incidencia, “el nuevo cálculo las representa como cuatro tensores”.

De cara al futuro, los investigadores planean desarrollar una “herramienta de estimación del ahorro de combustible” para camiones y autobuses con paneles fotovoltaicos. Según Araki, la validación basada en el seguimiento de 130 camiones hasta el momento está en curso. Además, hay otros proyectos previstos para abordar los desafíos en las pruebas de módulos desarrollados para la energía agrivoltaica, la construcción de energía fotovoltaica integrada, así como la energía fotovoltaica alpina y la energía fotovoltaica integrada en aviones, como los pseudosatélites de gran altitud (HAPS). ).

El trabajo de investigación es resultado del aporte colectivo de miembros de la CEI TC82 PT600 iniciativa que tiene como objetivo establecer estándares para los sistemas VIPV.

Imagen: Materiales de energía solar y células solares, Universidad de Miyazaki.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Una serie de estudios longitudinales de tres sitios de polinizadores solares en Minnesota han demostrado evidencia de praderas nativas que crecen bajo paneles solares, proporcionando beneficios para el suelo y hábitat para la vida silvestre y los polinizadores.

Investigación dirigida por el Departamento de Energía de EE.UU. Laboratorio Nacional de Energías Renovables (NREL) ha recopilado datos sobre las interacciones entre el hábitat, los polinizadores, el suelo y la producción de energía solar en tres proyectos solares a gran escala en Minnesota.

El equipo de Prácticas solares innovadoras integradas con economías y ecosistemas rurales (InSPIRE) del NREL ha realizado investigaciones en los tres sitios durante los últimos seis años, en lo que el laboratorio dice que es la evaluación más completa y de mayor duración de las interacciones entre la energía solar, el suelo, el hábitat y polinizadores hasta la fecha.

Los hallazgos se presentan en tres estudios, Beneficios ambientales colaterales del mantenimiento de la vegetación nativa con la infraestructura solar fotovoltaica”, disponible en El futuro de la Tierra, Si lo construyes, ¿vendrán? Respuestas de la comunidad de insectos al establecimiento de hábitat en instalaciones de energía solar en Minnesota, EE.UU. UU.”, disponible en Cartas de investigación ambiental y «Pequeña pradera debajo del panel: prueba del establecimiento de una mezcla de semillas en el hábitat de polinizadores nativos en tres sitios solares a escala de servicios públicos en Minnesota”, disponible en Comunicaciones de investigación ambiental.

Las tres instalaciones solares estudiadas en los artículos son los sitios solares de Chisago, Atwater y Eastwood, que forman parte del proyecto solar Aurora, propiedad de Enel Green Power y ubicada en el área de Minneapolis y sus alrededores. NREL dice que estos sitios de polinizadores solares son los primeros proyectos solares comerciales a escala de servicios públicos en los EE.UU. UU. que presentan una investigación exhaustiva sobre ecovoltaica.

La investigación encontró que las actividades de restauración de las praderas pueden ocurrir debajo de los paneles solares. Una vez que se descubrió la vegetación de la pradera, se observó que los polinizadores utilizaban el sitio tanto como tierras dedicadas a la conservación, y la evidencia apunta hacia una mayor abundancia y diversidad tanto de la vegetación como de los polinizadores bajo los paneles solares.

Después de la construcción del parque solar, se necesitaron de tres a cuatro años para que la vegetación de la pradera se estableciera por completo, y algunas especies no aparecieron hasta los años cinco y seis.

Se descubrió que plantar hábitat de polinizadores y vegetación nativa mitiga parte del daño ambiental causado al suelo y al hábitat cuando se construyen instalaciones solares y, eventualmente, puede proteger el suelo de la erosión futura, agrega la investigación, pero también advierte que puede llevar mucho tiempo restaurarlo. suelo después del daño causado por la producción intensiva de maíz y soja. NREL dice que el impacto general de las actividades de restauración del suelo en estos sitios no estará claro en los próximos años.

Los investigadores también observaron poco o ningún impacto en la generación anual de electricidad en todos los sitios. Si bien se registró que los hábitats nativos disminuyeron las temperaturas de los módulos fotovoltaicos en comparación con el suelo base, no se encontró que esto aumentara la producción de electricidad.

NREL dice que este hallazgo contradice los estudios realizados en otras regiones, lo que sugiere que la interacción microclimática entre los paneles fotovoltaicos, el suelo y la vegetación no es consistente en los diferentes paisajes y climas. «Uno de los resultados más importantes de esta investigación es que necesitamos estudiar más sitios», dijo el investigador de agrovoltaica del NREL, Chong Seok Choi. “Por ejemplo, el clima específico del sitio (la cantidad de humedad que hay en el aire, por ejemplo) puede afectar si el enfriamiento que observamos en el hábitat nativo puede conducir a una mayor eficiencia fotovoltaica. Todavía queda mucho trabajo por hacer”.

Los tres estudios fueron financiados por la Oficina de Tecnologías de Energía Solar del Departamento de Energía de EE.UU. UU. y realizados por NREL y Laboratorio Nacional de Argonnejunto con socios de investigación de la Universidad de Minnesota y la Universidad de Temple y profesionales de MNL, anteriormente Minnesota Native Landscapes.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Este fin de semana, migraremos nuestros servidores para mejorar su experiencia de navegación.

revistapv

Estimados lectores,

Este fin de semana, migraremos nuestros servidores para mejorar su experiencia de navegación. Durante este período, tenga en cuenta lo siguiente:

  • Congelación de contenido: Para garantizar la integridad y coherencia de nuestros datos, no se agregará ningún contenido nuevo durante el período de migración. Los comentarios o contenidos similares agregados durante el período de migración no se transferirán.
  • Interrupciones Temporales: Durante el proceso de migración, es posible que experimente contratiempos temporales o problemas para acceder a ciertas partes de nuestro sitio web. Esto es normal y agradecemos su paciencia y comprensión.

Estamos trabajando diligentemente para completar esta migración de la manera más rápida y fluida posible. Nuestro objetivo es ofrecerle un sitio web más sólido y rápido.

Calendario de migración:

  • Fecha de inicio: domingo 24 de noviembre
  • Fecha estimada de finalización: domingo 24 de noviembre

Gracias por su continuo apoyo y paciencia.

Atentamente,
Tu equipo de pv magazine

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

El fabricante chino JA Solar acordó construir una fábrica de módulos y células solares de 2 GW en Egipto con el apoyo de Global South Utilities, con sede en los Emiratos Árabes Unidos.

Imagen: JA Solar

El gobierno egipcio ha firmado un memorando de entendimiento (MoU) con Global South Utilities, con sede en los Emiratos Árabes Unidos, y JA Solar de China para establecer dos instalaciones de fabricación de energía solar en lugares no especificados. El primer ministro egipcio, Mostafa Madbouly, asistió a la ceremonia de firma.

JA Solar supervisará la construcción de una fábrica de células solares de 2 GW y una fábrica de módulos fotovoltaicos de 2 GW, en asociación con entidades locales egipcias. La fábrica de células solares costará 138 millones de dólares, mientras que la fábrica de módulos requerirá 75 millones de dólares.

Global South Utilities ayudará a JA Solar a realizar estudios de viabilidad y obtención de subvenciones gubernamentales.

Las fábricas abastecerán principalmente al mercado interno de Egipto y al mismo tiempo reforzarán las cadenas de suministro locales con materiales como vidrio y aluminio. Los funcionarios egipcios enfatizaron el papel de las instalaciones en el apoyo a los objetivos de energía renovable y el desarrollo económico de Egipto.

JA Solar, un fabricante líder de energía solar, informó 57 GW en envíos de módulos fotovoltaicos en 2023, con 37,6 GW enviados en los primeros tres trimestres de 2024, la mitad a mercados extranjeros.

Egipto pretende generar el 42% de su energía a partir de fuentes renovables para 2030, reduciendo la dependencia de los combustibles fósiles.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La empresa alemana de equipos fotovoltaicos Coatema Coating Machinery afirma que sus soluciones de procesamiento rollo a rollo abarcan desde el laboratorio o el piloto hasta la escala de producción.

Proveedor de equipos de fabricación Maquinaria de recubrimiento Coatema ha lanzado una línea de productos rollo a rollo para tecnologías flexibles orgánicas, de perovskita y de células solares sensibilizadas por colorantes (DSSC).

Los productos de la empresa alemana admiten anchos de banda de trabajo de hasta 1.000 mm, así como una herramienta más pequeña para ajustes hoja a hoja.

El mayor de esta línea de productos fotovoltaicos rollo a rollo es Click&Coat, un modelo con anchos de banda de trabajo de 300 mm, 500 mm y 1.000 mm. Está diseñado para personalizarse con más de 30 módulos de proceso diferentes, incluidos secadores, laminadores, procesos láser, corte y equipos de control de calidad.

Sólo para el recubrimiento, hay más de 20 módulos disponibles, incluidos huecograbado, rasqueta, recubrimiento por ranura, pantalla rotativa, recubrimiento de cortina y serigrafía. En cuanto al secado, la empresa ofrece otras opciones, como aire caliente, infrarrojos, reticulación UV y secado por chorro.

El equipo está en uso en el Organización de Investigación Científica e Industrial del Commonwealth (CSIRO) en Australia, según Thomas Kolbusch, director de marketing y tecnología de Coatema. Otro ejemplo es Tecnologías de Electrónica Orgánica (OET) en Grecia, donde el fabricante de OPV está desarrollando soluciones para los mercados de agrovoltaica, automoción y materiales de construcción.

OET participa en un proyecto de la Unión Europea conocido como Flex2Energy, cuyo objetivo es integrar sistemas de control de calidad y trazado láser en línea dentro del proceso rollo a rollo, para su uso en una línea de ensamblaje de módulos automatizados construidos por una empresa española de maquinaria. Asamblea Mondragón.

Otros clientes de la industria fotovoltaica se encuentran en Brasil, América del Norte y Europa. «Estamos viendo que los fabricantes de perovskita y fotovoltaica orgánica están comenzando a fabricar productos para aplicaciones de Internet de las cosas sin baterías, por ejemplo», dijo Kolbusch. revistapv

De cara al futuro, Kolbusch ve oportunidades de mercado en la agrovoltaica. “En Grecia, España y Alemania existe interés por parte de las agencias gubernamentales en las aplicaciones de invernadero debido al beneficio de ahorro de espacio y al potencial para producir alimentos y energía con la misma infraestructura. Existe un enorme potencial para agregar grandes volúmenes de capacidad solar en áreas donde hay muchos invernaderos”, afirmó.

La energía fotovoltaica flexible tiene características que le dan una ventaja competitiva en comparación con la energía fotovoltaica convencional para su uso en invernaderos. “Es más liviano, de menor costo, más fácil de instalar y de mantener limpio. También produce electricidad durante más horas al día, arrancando y deteniéndose más tarde que la energía solar convencional”, afirmó Kolbusch.

Coatema también dispone de dos sistemas rollo a rollo más pequeños: el Easycoater para impresión hoja a hoja en tamaños estándar A4 y A0, y el Smartcoater con anchos de banda de hasta 300 mm, adecuado para laboratorio o pequeña producción piloto.

Coatema, fundada en 1974, diseña y produce equipos hoja a hoja y rollo a rollo para recubrimiento, impresión y laminación. Tiene productos para la fabricación de baterías, energía solar fotovoltaica, dispositivos médicos, pilas de combustible, hidrógeno verde y electrónica impresa.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

AleaSoft Energy Forecasting dice que la mayor producción eólica y la menor demanda arrastraron ligeramente a la baja los precios de la electricidad la semana pasada. Sin embargo, las medias semanales se mantuvieron por encima de los 100 € (105,36 $)/MWh en todos los mercados analizados, excepto en el mercado nórdico.

Imagen: AleaSoft Previsión Energética

Los precios medios en la mayoría de los principales mercados eléctricos europeos cayeron la semana pasada, según el análisis de AleaSoft Energy Forecasting.

La consultora registró descensos de precios medios en los mercados belga, británico, holandés, francés, alemán, nórdico, portugués y español en comparación con el semana anterior.

El mercado italiano, sin embargo, registró el precio medio más alto de la semana, 132,84 € (139,96 $)/MWh. Los precios en todos los mercados, excepto el mercado nórdico, se mantuvieron por encima de los 100 €/MWh, donde la media semanal fue de 30 €/MWh.

La consultora atribuye la ligera caída de los precios de la electricidad a un aumento significativo de la producción de energía eólica y al aumento de la demanda en algunos mercados. A pesar de que los precios medios del gas alcanzaron un máximo de 46,55 €/MWh el 15 de noviembre, el más alto de 2024, AleaSoft afirmó que la energía eólica compensó el impacto.

Aunque los precios semanales bajaron, varios mercados registraron su precio por hora más alto del año. El mercado francés alcanzó los 125,10 €/MWh el 14 de noviembre, su máximo desde diciembre de 2023, mientras que España y Portugal alcanzaron los 136,37 €/MWh el 18 de noviembre, su máximo desde octubre de 2023.

De cara al futuro, AleaSoft dijo que los precios de la electricidad seguirán cayendo en la mayoría de los principales mercados europeos en la tercera semana de noviembre, impulsados ​​por nuevos aumentos en la producción de energía eólica.

La producción de energía solar aumentó en Francia e Italia, pero cayó en Alemania, Portugal y España. Francia y Portugal registraron récords diarios de producción solar en noviembre, alcanzando 52 GWh y 14 GWh el 15 y 11 de noviembre, respectivamente.

AleaSoft dijo que espera un aumento en la producción solar en Alemania y España esta semana, aunque la producción caerá en Italia.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

La iniciativa Desert to Power (DtP) del Banco Africano de Desarrollo (BAfD), cuyo objetivo es instalar 10 GW de energía solar en 11 países del Sahel para 2030, está contratando a un coordinador de proyecto. La fecha límite de solicitud es el 20 de diciembre.

Imagen: Pixabay

El Centro de Ecowas para la Energía Renovable y la Eficiencia Energética (ECREEE) está buscando un coordinador de proyecto para ayudar a ejecutar el buque insignia del BAfD. autoedición iniciativa.

La iniciativa DtP, que primero lanzado en 2018, tiene como objetivo implementar 10 GW de energía solar en 11 países mediante una combinación de soluciones conectadas y fuera de la red para 2030. La primera fase del programa está dirigida a Burkina Faso, Chad, Malí, Mauritania, Níger, Nigeria y Senegal.

ECREEE está buscando un coordinador de proyecto para supervisar la implementación del proyecto y gestionar las operaciones diarias. El coordinador planificará, coordinará y gestionará la contratación de servicios de consultoría vinculados a dos componentes de DtP.

El primero, el Programa Regional de Energía de África Occidental (WAREP), se centra en la creación de un programa regional de minirredes. El segundo, el Programa Regional de Asistencia Técnica para el Sahel (ReTAPS), tiene como objetivo promover proyectos solares en el Sahel y atraer inversiones privadas para instalaciones conectadas a la red y minirredes. ECREEE enumera responsabilidades adicionales en el documento de licitación.

Los posibles solicitantes deben tener al menos 10 años de experiencia posterior a la maestría en la gestión o prestación de servicios de asesoramiento técnico para proyectos de energía sostenible y al menos siete años de experiencia trabajando en el sector de energía sostenible de África Occidental.

Los solicitantes pueden enviar expresiones de interés por correo electrónico hasta el 20 de diciembre.

ECREEE abrió una licitación para un especialista en gestión financiera para apoyar los componentes WAREP y ReTAPS de la iniciativa en Puede 2024.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Trina Solar dice que ha logrado una eficiencia récord del 26,58 % para una célula solar de contacto pasivado con óxido de túnel (TOPCon). El fabricante chino afirma que el Instituto Alemán para la Investigación de la Energía Solar Hamelin (ISFH) ha verificado el resultado de forma independiente.

Imagen: Trina Solar

trina solar ha logrado una eficiencia de conversión de energía del 26,58% para su célula solar industrial TOPCon de gran superficie. El Instituto Alemán para la Investigación de la Energía Solar en Hamelín (ISFH CalTeC) ha verificado el resultado de forma independiente, según el fabricante chino de módulos fotovoltaicos.

«Esta es la primera vez que la eficiencia de la celda TOPCon tipo n supera el 26%, y la velocidad de este avance es notable», dijo Gao Jifan, director ejecutivo de Trina Solar. “Trina Solar seguirá intensificando sus esfuerzos de I+D en células y módulos TOPCon, mejorando aún más su competitividad general. Al mismo tiempo, fortaleceremos la protección de la propiedad intelectual para garantizar que estas tecnologías de vanguardia permanezcan firmemente en nuestras manos”.

El jefe de estrategia global de productos de Trina Solar, Zhang Yingbin, dijo en un entrevista reciente estafa revistapv que la empresa pretende alcanzar una eficiencia superior al 26% en las células TOPCon para 2027.

Trina Solar alcanzó recientemente un nuevo hito de eficiencia del 26,58% para sus células TOPCon de silicio monocristalino tipo n, tras un 25,9% record establecido en octubre.

El avance proviene del refinamiento de piezas de silicio tipo n dopadas con fósforo de 210 mm × 182 mm y del uso de tecnología patentada de contacto pasivado de túnel cuántico.

Trina Solar dijo que optimizó la densidad de corriente de recombinación, la captura óptica y la impresión de líneas ultrafinas para mejorar el rendimiento.

En el pasado, ha establecido récords con celdas i-TOPCon con una eficiencia del 24,58 % en 2019, una celda de 210 mm con una eficiencia del 25,5 % en 2022, verificada por el Instituto Nacional de Metrología de China, y un módulo de salida récord de 740,6 W, certificado por TÜV SÜD. , en abril de 2024.

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

Gabón ha inaugurado su primera planta solar a escala comercial, la más grande de África Central. El promotor Solen SA Gabón ha dicho que pretende ampliar la capacidad del proyecto Ayémé a 30 MW para alimentar a más de 300.000 hogares.

Imagen: Andreas Trol, Pixabay

Gabón ha inaugurado su primer proyecto solar a escala comercial. La planta fotovoltaica de Ayémé está situada en la zona de Plaine-Ayeme, en el noroeste de Gabón, a unos 30 km de la capital del país, Libreville.

Solen SA Gabón, filial de Solen Renewable Dubai, construyó y opera el proyecto, con una capacidad inicial de 11 MW, según el medio local. la union.

Según se informa, la compañía dijo que pretende ampliar la instalación a 30 MW en virtud de un acuerdo de compra de energía (PPA) con la empresa estatal Société d’Energie et d’Eau du Gabon (SEEG). Se espera que el proyecto proporcione energía a 300.000 hogares y cree 150 puestos de trabajo directos.

La planta, anunciada en 2021, enfrentó retrasos y reducciones en la financiación después de que comenzara la construcción en agosto de 2022. Inicialmente planificada como un proyecto de 120 MW dividido en dos fases de 60 MW, se reducción durante el desarrollo.

En la inauguración, el presidente Brice Oligui Nguema destacó el proyecto como símbolo del compromiso de la nación con el desarrollo sostenible y la acción climática.

«De hecho, se trata de un hito importante en la producción y distribución de electricidad limpia, sostenible y moderna, lo que ilustra el compromiso de nuestro país para mejorar el acceso a la energía y la lucha contra el cambio climático», afirmó.

La combinación eléctrica de Gabón depende actualmente de la energía hidroeléctrica (47,7%), el gas natural (35%), el petróleo (16,9%) y los biocombustibles (0,3%), según la Agencia Internacional de Energía. (AIE).

El país informó sólo 1 MW de capacidad solar instalada a finales de 2022, sin cambios desde 2021, según la Agencia Internacional de Energías Renovables (IRENA).

Este contenido está protegido por derechos de autor y no puede reutilizarse. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, comuníquese con: editores@pv-magazine.com.

contenidos populares

💡✨ Hola ¡Estamos aquí para ayudarte!